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ABSTRACT

In this paper, we address the problem of separating N un-
known sources using as many observed mixtures. The sour-
ces considered here are assumed to be of a non-stationary
nature, i.e., their spectral contents are assumed to be time-
varying. Using linear time-frequency (TF) representations
of the mixtures along with a classification procedure based
on vector clustering yield an effective way to separate the
sources. Compared to other existing TF based separation
methods, the proposed one is characterized by its simplic-
ity and ease of implementation. Moreover, it can be applied
in situations where others cannot. Specifically, the algo-
rithm can handle monocomponent as well as multicompo-
nent sources and its assumptions about the mixing matrix
are more relaxed than other existing algorithms. Example
is presented to prove the validity and efficiency of the pro-
posed algorithms.

1. INTRODUCTION

Blind source separation (BSS) deals with the problem of re-
covering unknown signals from several observed mixtures.
Usually, these mixtures are obtained as the output of a set
of sensors, whereby, each sensor collects a different com-
bination of the source signals. The separation procedure is
referred to as blind because, at the sensors, the source sig-
nals are not known and there is no information about the
mixing process [1].

Various methods have been introduced for BSS. These
methods use different approaches, such as the probabilis-
tic approach, the spectral/time-coherence approach and the
time-frequency (TF) approach [2, 6]. The TF based ap-
proach is the most effective in dealing with nonstationary
source signals, i.e., signals whose spectral contents vary
with time.

In the literature, we find many BSS studies based on
TF analysis. A pioneering TF based method is reported

in [3]. The technique developed in [3] introduces the so-
called space time-frequency distribution (STFD). Essentia-
lly, the STFD based algorithm uses a whitening procedure
of the STFD matrix followed by a joint block diagonaliza-
tion procedure of spatial quadratic TF matrices evaluated at
some particularly well selected TF points. To ensure the di-
agonalization structure of the STFD, which is necessary for
the block diagonalization procedure, each of the selected
TF points must belong to an auto-term of one of the sources
only. This condition was later relaxed to allow utilization
of TF points from both auto-term as well as cross-term re-
gions [4]. In the STFD based algorithm, one can use any TF
representation. However, the best results are obtained for a
reduced or cross-terms free TF representation, such as the
short-time Fourier transform (STFT). We observe that the
STFD based algorithm

• is a block-based technique and, consequently, neces-
sitates somewhat sophisticated and expensive process-
ing

• requires full knowledge of the auto-terms and cross-
terms regions

• requires the source signals to be of a monocomponent
nature

• needs the user to attribute a particular TF point to its
corresponding source.

To avoid the above limitations, we propose in this paper a
novel and simpler TF based method. The proposed method
can use an arbitrary linear TF representation. Below, we
choose the STFT to be such a TF tool. The use of a linear
TF representation stems from the fact that it yields a sim-
ple mathematical relationship between the mixtures vector
and the sources vector in the TF domain. In addition, it
completely alleviates the problem of the usually undesirable
cross-terms. Contrary to the algorithm in [3], the proposed
algorithm automatically attributes a given TF point to its
corresponding source. This is performed by applying either
of two proposed classification schemes. The elements of a
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particular class are vector estimates of a particular vector
column of the mixing matrix. Subsequently, the mean or
the centroid of the vectors in a given class are used as an
estimate of a particular vector column of the mixing matrix.
Once the sources are separated in the TF domain, we use an
inverse TF transformation to recover each of these sources
in the time-domain.

2. PROBLEM STATEMENT
In this section, we assume the existence of N independent
source signals s1(t), . . . , sN (t) and the observation of as
many mixtures x1(t), . . . , xN (t). The mixtures are assumed
linear and instantaneous, i.e., xi(t) =

∑N
n=1 ainsn(t) for

i = 1, . . . , N . In matrix form, the considered BSS model
can be written as

x(t) = A s(t) (1)

where s(t) = [s1(t), . . . , sN (t)]T represents the unknown
nonstationary sources, x(t) = [x1(t), . . . , xN (t)]T repre-
sents the mixtures, and A represents the N × N unknown
mixing matrix. In the sequel, we assume the mixing matrix
entries to be arbitrary and real, and its columns to be lin-
early independent. Because of the inherent ambiguities in
the BSS problem, the sources separation is only possible up
to an unknown scaling and an unknown permutation [3].
That is, the estimated signals may not be recovered in an
orderly manner and their amplitudes are multiplied by some
constant scalars.

3. PROPOSED BSS METHOD

In this section, we present the theoretical derivations of the
proposed technique, some of its implementational aspects
and an example to prove its validity.

3.1. Derivations

For simplicity, let us consider the noise-free model given by
Eq. (1), namely,⎡

⎢⎣
x1(t)

...
xN (t)

⎤
⎥⎦

︸ ︷︷ ︸
x(t)

=

⎡
⎢⎣

a1,1 a1,2 . . . a1,N

...
...

...
...

aN,1 aN,2 . . . aN,N

⎤
⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎣

s1(t)
...

sN (t)

⎤
⎥⎦

︸ ︷︷ ︸
s(t)

(2)

where x(t), A and s(t) represent the same quantities de-
fined earlier. Now, let us take the STFT of each mixture
xi(t), i = 1, . . . , N . This operation yields the following
result

X1(t, f) = [a1,1 a1,2 . . . a1,N ]

⎡
⎢⎣

S1(t, f)
...

SN (t, f)

⎤
⎥⎦

...

XN (t, f) = [aN,1 aN,2 . . . aN,N ]

⎡
⎢⎣

S1(t, f)
...

SN (t, f)

⎤
⎥⎦(3)

where Si(t, f), i = 1, . . . , N is the STFT of the corre-
sponding source signal si(t), i = 1, . . . , N . In a more
compact form, the above result can be re-written as
⎡
⎢⎣
X1(t, f)

...
XN (t, f)

⎤
⎥⎦=

⎡
⎢⎣

a1,1S1(t, f) + . . . + a1,NSN (t, f)
...

...
aN,1S1(t, f) + . . . + aN,NSN (t, f)

⎤
⎥⎦ (4)

Therefore, for an arbitrary TF point, say (t1, f1), where only
the source signal si(t) exists, the result in (4) reduces to

⎡
⎢⎣

X1(t1, f1)
...

XN (t1, f1)

⎤
⎥⎦ = Si(t1, f1)

⎡
⎢⎣

a1,i

...
aN,i

⎤
⎥⎦ (5)

which is just a complex scalar value Si(t1, f1) multiplied
by the ith column vector of the mixing matrix A.

3.2. Classification

The previous result indicates that if we can select N points
in the TF plane such that each point belongs to only one
source, then, we can estimate all the N column vectors of
the mixing matrix A. In what follows, we will present a
classification method to automatically select such TF points.
Moreover, this classification method does not select only
one TF point for a given source but will select a set of points
for each source. This, in turn, will yield better estimates of
the colum vectors of the matrix A.

Now, how to decide that two arbitrary TF points belong
to the same source or not? To answer this, let us consider
two different TF points (t1, f1) and (t2, f2). If these two
points belong to the same source, say si(t), we can write

X(t1, f1) =

⎡
⎢⎣

X1(t1, f1)
...

XN (t1, f1)

⎤
⎥⎦ = Si(t1, f1)

⎡
⎢⎣

a1,i

...
aN,i

⎤
⎥⎦

and

X(t2, f2) =

⎡
⎢⎣

X1(t2, f2)
...

XN (t2, f2)

⎤
⎥⎦ = Si(t2, f2)

⎡
⎢⎣

a1,i

...
aN,i

⎤
⎥⎦ .

This implies that the real (or imaginary) parts of the vec-
tors X(t1, f1) and X(t2, f2) must be co-linear. Thus, we
attribute a set of TF points to a particular class if their cor-
responding mixture vectors X(t, f) have co-linear real (or
imaginary) parts. Based on this, the general steps of the
proposed algorithm are stated in Table I.

If the sources overlap, or if there is noise, in the TF do-
main we may have vectors X(t, f) whose real (or imagi-
nary) parts are not co-linear to any of the vectors of the N
classes discussed above. Thus, these vectors cannot be clas-
sified in any of the N classes associated with the sources.

III  461



1. Evaluate the STFT, Xi(t, f), of each mixture sig-
nal xi(t), i = 1, . . . , N .

2. For each TF point, (t, f), form the vector
X(t, f) = [X1(t, f), X2(t, f), . . . , XN (t, f)]T .

3. Classify these vectors into N classes using the co-
linearity rule explained earlier.

4. For each class, use its vectors mean as an estimate
of a column vector of the mixing matrix A.

5. Invert the estimate of the matrix A and multiply it
by the mixtures vector x(t) to obtain estimates of
the original sources s(t).

Table. I: Basic BSS algorithm for no TF overlap of the sources.

Consequently, the classification procedure will result in more
than the N classes associated to the N sources. Therefore,
in the classification procedure the initial number of classes
is chosen equal to L where L > N . The initial number of
classes L can be chosen in many ways. A simple way is
to choose L equal to the number of TF points in the STFT.
That is, in the implementation, we start by assuming that
we have as many classes as there are vectors X(t, f). Then,
using the co-linearity rule, this number is decreased each
time two vectors are found to be co-linear. Obviously, go-
ing through all the TF points of the STFT might be compu-
tationally demanding. To avoid this, a better alternative is
proposed below.

First, let us consider that in the TF domain the signals
are characterized by high peaks around their instantaneous
frequencies. Second, we observe that in the classification
procedure there is no need to consider X(t, f) for all TF
points but only for some points where the sources exist.
Therefore, selecting only the highest peaks of the TF rep-
resentation will certainly result in TF points belonging only
to the sources or their possible overlaps. A possible way to
select the highest peaks of the TF representation is to se-
lect the peaks of each of its slices. In the procedure below,
we choose to select only N peaks from each slice of the
TF representation. This is because, at most, we can have
N sources for each time instant t. In this way, the initial
number of classes used in the classification reduces to only
L = N · T compared to L = F · T , the total number of
points in the TF matrix (T and F represent the number of
discrete-time and discrete-frequency bins used in the imple-
mentation of the STFT, respectively).

Thus, we state in Table II an improved version of the
algorithm given in Table I. As mentioned earlier, the above
algorithm is different from those proposed in [5]. The dif-
ference is not only in the way the sources are classified
and separated in the TF domain but also in the assumptions
made in the respective methods. In [5], all the coefficients of
the mixing matrix must be of the same sign, must be strictly
different from zero and all their pairwise ratios different (re-

1. Evaluate the STFT, Xi(t, f), of each mixture sig-
nal xi(t), i = 1, . . . , N as well as the matrix
C(t, f) =

∑N
i=1 |Xi(t, f)|.

2. For the starting time instant t1, find the frequen-
cies corresponding to N highest peaks of the slice
C(t1, f). Save these TF points.

3. Repeat the above step for all the other time instants.

4. Evaluate X(t, f) = [X1(t, f), . . . , XN (t, f)]T for
all the L time-frequency pairs (t, f) collected in
the previous two steps.

5. Classify these L vectors into classes using the co-
linearity rule explained earlier. Keep only the N
largest classes (in terms of number of vectors in
them).

6. For each class, use its vectors mean as an estimate
of a column vector of the mixing matrix A.

7. Invert the estimate of the matrix A and multiply it
by the mixtures vector x(t) to obtain estimates of
the original sources s(t).

Table. II: Improved version of the algorithm given in Table I.

fer to (22-24)). In our proposed method, we do not require
such limitations. In fact, as shown in the coming examples,
the coefficients can be zero and of arbitrary signs. How-
ever, our proposed method assumes the vector columns of
the mixing matrix to be linearly independent and the major-
ity of the selected TF points (collected in Steps 2 & 3) to
belong to the individual sources.

Note that C(t, f) =
∑N

i=1 |Xi(t, f)| used in Step 1 of
the improved algorithm has been used only to localize the
peaks of the sources in the TF domain, consequently, other
reduced interference TF representations can also be used in-
stead. However, once the peaks (or their corresponding TF
points) have been selected, it is the STFT that we use in
order to build the vectors X(t, f).

3.3. Example

To prove the efficiency of the proposed algorithm, let us
consider the following example. In this example, we con-
sider three sources, which are highly non-stationary. One
of these sources is chosen to be a sinusoidally frequency
modulated(FM) signal. The second source is chosen to be a
multicomponent signal consisting of two linearly FM com-
ponents, one of an increasing nature and the other of a de-
ceasing nature. The third source is also a multicomponent
signal consisting of a quadratically FM component and a
sinusoid. The sources are mixed using A given by A =
[0.9 0.4 0.1; 0.0 0.9 0.3;−0.4 0.0 0.8]. Then, white Gaus-
sian noise is added to each mixture signal. The signal-to-
noise ratio (SNR), evaluated as the power of the noise over
the power of the weakest source, is chosen equal to 10 dB.
The TF representation C(t, f) is displayed in Figure 1 (top
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left plot) along with the successfully separated sources. As
we can see, the proposed algorithm performs an efficient
separation procedure.
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Fig. 1. The TF representation C(t, f) (top left plot) along
with the separated sources (remaining plots).

Note that even-though the mixing matrix entries are cho-
sen to be of different signs and some of them have zero
value, the proposed algorithm is able to separate the sources.
However, the algorithms in [5] cannot be applied in both
examples because their assumptions (concerning A) are vi-
olated.

3.4. Alternative Classification

We propose to use an alternative classification procedure
based on a statistical optimization when there is a signifi-
cant amount of TF overlap between the sources. In this pro-
cedure, known as vectors clustering [7, Chap. 6], the real
parts of the L vectors X(t, f) (obtained in Step 4, Table II)
are considered to be spatial points in a multi-dimensional
space. Starting from an initial set of N points (called cen-
troids) arbitrarily chosen among the L ones, the classifica-
tion procedure tries to statistically classify the real-parts of
the selected L vectors X(t, f), based on their distances to
the centroids, into N classes (called clusters). The algo-
rithm, then, updates its centroids and re-evaluates the dis-
tances to yield a new set of clusters. This adaptive proce-
dure stops when it finds the optimal clusters. The optimality
is in terms of minimizing the sum, over all clusters, of the
within-cluster sums of point-to-centroid distances. In this
classification, and without loss of generality, we need to set
the norms of the real-parts of the selected vectors to unity.

Note that the proposed TF based BSS algorithm when
implemented using the improved classification procedure,
discussed above, will have exactly the same steps as in Ta-
ble II except for Step 5, which now reads as

5 Classify the L vectors into N classes using vector
clustering method.

4. CONCLUSION

In this paper, we studied the problem of separating N un-
known non-stationary source signals using N observed mix-
tures. For that, we proposed a simple and efficient algo-
rithm based on the linear TF representations of the mixtures
and vectors classification. Two different classification pro-
cedures were presented for the sources having less or dras-
tic TF overlap, respectivly. In comparison to other exist-
ing TF based separation methods, we showed that the pro-
posed ones are characterized by their simplicity and ease of
implementation. We also showed that the proposed algo-
rithms can handle monocomponent as well as multicompo-
nent sources and its assumptions about the mixing matrix
are more relaxed than other existing algorithms. Ilustrative
results were presented to prove the validity and efficiency
of the proposed algorithms. Note that a modified version
of the proposed algorithm for the under-determined case
(when the number of sources is larger than the number of
sensors) as well as illustrative results for real data (such as,
mixture of speech and music) are not included here due to
space constraint.
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