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ABSTRACT

Conditions for asymptotic wide-sense stationarity of
generalized autoregressive conditional heteroscedasticity
(GARCH) processes with regime-switching are necessary for
ensuring finite second moments. In this paper, we intro-
duce a stationarity analysis for the Markov-switching time-
frequency GARCH (MSTF-GARCH) model which has been
recently introduced for modeling nonstationary signals in the
time-frequency domain. We obtain a recursive vector form
for the unconditional variance by using a representative ma-
trix which is constructed from both the GARCH parameters
of each regime, and the regimes’ transition probabilities. We
show that constraining the spectral radius of that matrix to be
less than one is both necessary and sufficient for asymptotic
wide-sense stationarity. The generated matrix is also shown
to be useful for deriving the asymptotic covariance matrix of
the process.

1. INTRODUCTION

Generalized autoregressive conditional heteroscedasticity
(GARCH) models with switching-regimes are widely used
in the field of econometrics [1-3], and they have recently
been utilized for signal processing applications of nonstation-
ary signals such as speech [4,5]. GARCH processes with
Markov-switching regimes, as well as single-regime GARCH
processes, are nonstationary as their variances change recur-
sively over time. However, if these processes are asymptot-
ically wide-sense stationary then their second moments are
guarantied to be finite. A necessary and sufficient condi-
tion for the asymptotic wide-sense stationarity of a (single-
regime) GARCH(p, q) process has been developed in [6].
Stationarity conditions for two degenerated cases of GARCH
processes with Markov-switching regimes have been derived
in [2, 3], and necessary and sufficient conditions for as-
ymptotic wide-sense stationarity have been developed in [7]
for the general cases of the GARCH models with Markov-
switching regimes of Gray [1], Klaassen [2] and Haas, Mit-
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tnik and Paolella [3]. Gray, Klaassen and Haas ef al., de-
veloped their variants of Markov-switching GARCH models
for improved volatility forecasts of financial time-series as-
suming a noiseless environment, and they all formulated their
models in different ways such that the conditional variance
does not depend on past active regimes. Therefore, past ob-
servations provide complete specifications of current condi-
tional variance for any given regime.

The time-frequency GARCH model with Markov-
switching regimes have been recently proposed for modeling
nonstationary signals in the time-frequency domain [5]. This
Markov-switching time-frequency GARCH model (MSTF-
GARCH) naturally extends the time-frequency GARCH
model [8, 9] such that the model parameters are regime-
dependent. Consequently, the conditional density is a func-
tion of the whole process’ history, i.e., past observations and
active regimes. By using a recursive estimation algorithm,
the MSTF-GARCH model has been shown to be useful for
modeling nonstationary signals as speech, in the short-time
Fourier transform (STFT) domain [5].

In this paper, we analyze the asymptotic stationarity of the
MSTF-GARCH model in the general case of m-state Markov
chains and (p, ¢)-order GARCH processes, and give a nec-
essary and sufficient condition for the asymptotic wide-sense
stationarity, as well as the asymptotic covariance matrix. We
assume no history knowledge of the process except for the
model parameters and the stationarity of the Markov chain,
and specify the unconditional variance of the process us-
ing the expectation of the regime dependent conditional vari-
ances. The expectation of the conditional variance at a given
regime is recursively constructed from the conditional expec-
tation of both previous conditional and unconditional vari-
ances. We define a representative matrix for the model, and
show that the unconditional variance converges if and only
if the largest absolute eigenvalue of that matrix is less that
one. Therefore, this condition is both necessary and suffi-
cient for asymptotic second-order stationarity. The MSTF-
GARCH model differs from the three models analyzed in [7]
as it is a multivariate, complex-valued model, as well as it nat-
urally formulates the conditional variance by using past active
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regimes and their corresponding conditional variances.

This paper is organized as follows: In Section 2, we
review three variants of GARCH models with Markov-
switching regimes and define the Markov-switching time-
frequency GARCH model. In Section 3, we derive a nec-
essary and sufficient condition for asymptotic wide-sense sta-
tionarity of the latter, and give its asymptotic covariance ma-
trix.

2. MARKOV-SWITCHING GARCH MODELS

Three different variants of GARCH models with Markov-
switching regimes have been proposed in [1-3]. Each of
these models overcomes the problem of dependency on the
regime’s path encountered when integrating the GARCH
model with a regime-switching model.

Let S; denote the (unobserved) regime at a discrete time ¢
with a realization s; € {1,...,m}, and assume that {S;} is a
hidden Markov chain with transition probabilities as, s, , =
p(Sty1 = St41| St = s¢). Gray [1] proposed to model the
conditional variance of a Markov-switching GARCH model
as dependent on the expectation of its past values over the
entire set of states, rather than dependent on past states and
the corresponding conditional variances. This eliminates the
process’ dependency on past regimes. Let Y* 2 {e,. |7 < t}
be the set of observations up to time ¢ and let {v; } be iid ran-
dom variables with zero-mean and unit-variance. A general-
ization of Gray’s Markov-switching GARCH model to order
(p, q) can be formulated as

€t = Ot,5, VUt (1)

where the state dependent conditional variance follows

q p
2 2 2 t—j—1
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This model integrates out the unobserved regime path so the
conditional variance can be constructed from previous obser-
vations only. As a consequence, there is no path dependency
problem although GARCH effects are still allowed.

Klaassen [2] proposed modifying Gray’s model by replac-
ing p (Se—; =3[ Y771) in (2) by p (Si—; = 5| Y71, 5)
while evaluating Uist. Consequently, all available observa-
tions are used, as well as the given regime in which the con-
ditional variance is calculated. The conditional variance ac-

cording to Klaassen’s model is given by

q
2 _ 2 : . 2
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Another variant of Markov-switching GARCH model has
recently been proposed by Haas, Mittnik and Paolella [3].
This model assumes that a Markov chain controls the ARCH
parameters at each regime (i.e., £, and oy ), while the autore-
gressive behavior in each regime is subject to the assumption
that past conditional variances are in the same regime as that
of the current conditional variance. Specifically, the vector of

iy . A T,
conditional variances o7 £ [07,,...,07,,] " is given by
q P
2 _ 2 P
o, =&+ E Qg+ E B(j)o-tfj 5 (4)
i=1 =

where € £ [517 "'7£m]Tﬂ (87} = [ai,la "'7ai,m]T: i = 17 c g,
B2 [B1r s Bjm] » i =1,..,pand BY) 2 diag {8, } is
a diagonal matrix with elements 3; on its diagonal.

Note that the conditional variance in that model at a spe-
cific regime depends on previous conditional variances of the
same regime through the diagonal matrices BY). Conse-
quently, this model also allows derivation of the conditional
variance at a given regime from past observations only.

A natural extension of the time-frequency GARCH model
[8] to Markov-switching has been recently introduced for
modeling nonstationary signals in the time-frequency domain
[5]. Let X; € CK denote a K-dimensional random vec-
tor with elements X;;, where ¢ > 0 is a discrete time in-
dex and k € {0,...,K —1} is the frequency index. Let
Xt & {X, |7 <t} represent the data set up to time 7. Let
It £ {Xx*! S'} denote all available information up to time
t, which contains the clean signal and the regimes path up to
time ¢, S* = {s, | 7 < t}. An m-state MSTF-GARCH model
of order (p, q) is given by [5]

Xk = \/)\tk|t71‘/;fk7 k=0,.,K—-1, ®)

where {V} are iid complex random variables with zero-
mean, unit-variance and some known probability den-
sity. Given the state s;, the conditional variance of Xy,
Nkjt—1,5, = B {|Xuk|? |71, 5.}, is a linear function of pre-
vious conditional variances and squared absolute values:

q
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Sufficient conditions for the positivity of the conditional
variances defined by (2), (3), (4) and (6) are

55 > 07 ai,s > 07 6:}'75 2 07

1=1,...,q, j=1,..,p, s=1..,m. @)

GARCH models with Markov-regimes, are often used for
modeling financial time-series. In that case, clean past ob-
servations are generally available, and specifying the model
without resorting to the hidden regime path is of consid-
erable importance. However, in signal processing applica-
tions, the process may be observed in a noisy environment
so the process values, as well as the conditional variances
and active regimes, are to be estimated. Unlike the above-
mentioned GARCH models, the MSTF-GARCH is a multi-
variate, complex-valued model which naturally extends the
GARCH formulation such that the parameters are regime de-
pendent. Accordingly, the model entails the regime path for
the construction of the conditional variance from past obser-
vations.

3. ASYMPTOTIC STATIONARITY

The conditional variance of Markov-switching GARCH
processes changes recursively over time. Consequently, as-
ymptotic wide-sence stationarity is required to ensure a finite
second moment [2, 3, 7]. In this section we follow the ap-
proach in [7] for deriving a necessary and sufficient condition
for the asymptotic wide-sense stationarity and asymptotic co-
variance matrix of an MSTF-GARCH model.

Assuming a stationary Markov chain with stationary prob-
abilities ms = p (S: = s), the nonconditional variance vector
of an MSTF-GARCH process can be calculated by

E{X,0X;}=> m,E{Ay1]Si=s}, ®

where © denotes a term-by-term multiplication and * denotes
complex conjugation. By using the model definitions (5) and
(6), we obtain

E {At\t—l,st} =F {>\t|t—1 | St}

q
=614+ 0 E{Xi 0X s}

i=1
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where 1 defines a vector of ones.
Since no prior information is given, we have

E{X;i 0X;_;|se} = E{ N ip—iz1|se} (10)

and consequently we obtain

E {)‘t|t71,st} = €st1
+ Z (s, + Bis,) E{ Xizije—iz1| st}
i=1
(11)

S

where r £ max{p,q} and a; 5, = 0Vi > g and 3, ,
0 Vi > p. The conditional expectation of the conditional vari-
ance given a future regime can be obtained using Bayes’ rule:

E{X_ijt—i—1| st} = ZP (st—i|st) E{M—ijt—i—150_: } »

- (12)
and the conditional state probability in (12) can be evaluated
by [7] -

psiils) = —={A"}, . (13)

S
where A is the transition probabilities matrix, i.e., {A},; =
(l”
Let .
Kiss = (is +B;0) — {A'}; (14)

Ts

then by substituting (12) and (13) into (11) we obtain

E {At‘t717st} = Est 1

r
+ Z Z ﬁji,st,st_iE {At7i|t7i71,8t7@'} .
1=1 8¢
(15)

Following the recursive formulation of (15) we define the m x
m matrices K;, ¢ = 1, ..., r with elements

{Ki},s = Fiss, 8,8=1,...,m, (16)

let Agje—1,s, = [Atkjt—1,8,=1 > -os /\tk\tfl,St:m}T be the
vector of state dependent, conditional variances at time-
frequency bin (¢, k). Then by substitution (16) into (15) we
obtain for each k € {0, ..., K — 1} :

E{Atkjt-1.8,} =€+ Y KiE{ N inpmio1s,_.} - (A7)

i=1

T
X A [T T T
Let)\tk = |:)‘tk\t71,st7 Atfl,k\tflst,l?'“a )‘tfrJrl,k\tfr,st,,url:I
be a vector of conditional variances at time-frequency bin

_ T
(t, k), let £ = [gT, 0,..., O} and define an mr x mr matrix

as follows
[ KKy Ko K
I, O 0
0 Im
vE ) ,  (13)
| 0 0 I, 0 |
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where I,,, represents the m x m identity matrix. Then a recur-
sive vector formulation of the expected conditional variance
can be written for each k € {0,..., K — 1} as:

E {th} = E"_\IJE {thl,k} ) t> 07 (19)

with initial condition Xoyk. The solution for the recursive
equation (19) is finite for any ¢ € N if and only if the largest
eigenvalue in modulus of matrix ¥ is less than one [7, Theo-
rem 1], and under this condition

Jim B {Xp} = (I—-0)'Eg. (20)

J

Define the m x m matrix ¢ by {®},, = {(I— \Il)fl} ,

1,7 = 1, ...,m, then under stationarity we have
lim E {|th\2} — xTog, 1)
t—oo

where 7 denotes the vector of the stationary probabilities of
the Markov chain.

Since { X} are unconditionally zero-mean iid, a neces-
sary and sufficient condition for the asymptotic wide-sense
stationarity of the MSTF-GARCH process, defined by (5) and
(6), is p (V) < 1, and the stationary covariance matrix of the
process is given by

Jim B{X,X{"} = (n7®¢) I . (22)

This stationarity condition gives a necessary and sufficient
condition for the existence of a finite second moment of an
MSTF-GARCH process, and it also shows how some regimes
(but not all of them) can allow growth of the process’ variance
over time (i.e., Y ; ;s +>_; B; , > 1 for some states s) and
still the process variance will be finite [7].

The stationarity condition of an MSTF-GARCH model is
similar to the condition developed in [7] for the model defined
by (1) and (3) (which is a generalization of Klaassen’s model
[2] to m states of order (p, ¢)). Furthermore, if we look at one
frequency index k of the MSTF-GARCH model, its volatility
formulation differs from that of Klaassen’s model since the
conditional variance of the later is a linear function of pre-
vious expectations of conditional variances rather than their
values. However, since these expectations are conditioned on
all available information, they equal the expected value of the
state dependent unconditional variance of an MSTF-GARCH
process, given the same state. This explains why the stationar-
ity analysis of the two different models yields similar results.

4. CONCLUSIONS

Conditions for asymptotic wide-sense stationarity of GARCH
processes with regime-switching are essential for ensuring the
existence of an asymptotic finite second order moment. We
have presented stationarity analysis for the Markov-switching

time-frequency GARCH model and derived a necessary and
sufficient condition for asymptotic second order stationarity.
Furthermore, we showed that this condition, as well as the
asymptotic variance at any frequency bin index, are similar to
those related to Klaassen’s model, although the formulation of
these two models are different. The discussed model naturally
extends a GARCH model in the time-frequency domain to
a regime-switching model. Our stationarity analysis is also
applicable to any Markov-switching GARCH model which
formulates the conditional variance as a linear function of past
squared values and conditional variances.
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