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ABSTRACT
Taking as signal model the sum of a non-stationnary deter-
ministic part embedded in a white Gaussian noise, this pa-
per presents the distribution of the coefficients of the Short
Time Fourier Transform (STFT), which is used to determine
the maximum likelihood estimator of the noise level. We
then propose an automatic segmentation algorithm of the real
and imaginary parts of the STFT based on statistical features,
which is an alternative to the spectrogram segmentations con-
sidered as image segmentations. Examples of segmented time-
frequency space are presented on a simulated signal and on a
dolphin whistle.

1. INTRODUCTION

Time-Frequency Representations (TFR) are useful tools for
nonstationnary signal analysis by determining the time-frequ-
ency patterns, which are time-varying areas containing ener-
getic signal. A segmentation task is a helpful step in such a
signal characterization by highlighting these patterns. With
a general model of signal considered as a nonstationnary de-
terministic signal d[m] embedded in a white Gaussian noise
n[m] of variance σ2

x[m] = d[m] + n[m], (1)

we proposed ([1], [2]) a spectrogram segmentation based on
statistical features. Given that spectrogram coefficients of sig-
nal described in equation (1) have a non-central χ2 distribu-
tion while white Gaussian noise have a central χ2 distribution,
segmentation task consists in discriminating non-central from
central χ2 distribution.

In this paper, we propose a new way of segmentation, by
considering real and imaginary part of Short Time Fourier
Transform (STFT). Instead of having a χ2 distribution, TFR
coefficients have a Gaussian distribution, which allows a sim-
pler segmentation method. In section 2 we determine the real
and imaginary part of STFT distribution and show that their
respective variance are not always equal, in order to determine
an efficient noise level estimator in section 3.

In a second part, we use these results to propose a new
segmentation algorithm based on local statistical features of

the STFT, and its application on a simulated signal and a dol-
phin whistle.

2. DIFFERENCE OF VARIANCE BETWEEN
PROBABILITY DISTRIBUTION OF STFT REAL AND

IMAGINARY PARTS

The STFT of a discrete signal x[m] is determined by com-
puting the discrete Fourier transform on N overlapping seg-
ments centered on n, which describes the spectral contents of
x around the instant n. The STFT is defined by

Xφ[n, k] =

n+
Mφ−1

2∑
m=n−

Mφ−1

2

x[m]φ[m − n]e
−2iπk m

Mφ+Z , (2)

where k is the frequency index, φ is the Mφ-length window
function and Z the zero padding. We will consider an energy-
normalized window, so∑

φ[m]2 = 1. (3)

For the signal defined in (1), real and imaginary parts of the
STFT, Xr

φ[n, k] and Xi
φ[n, k], are sums of Mφ independant

Gaussian variables. Xr
φ[n, k] and Xi

φ[n, k] thus are Gaussian
variables, with mean respectively given by

E(Xr
φ[n, k]) =

n+
Mφ−1

2∑
m=n−

Mφ−1

2

d[m]φ[m − n] cos(−2πk
m

Mφ + Z
) (4)

E(Xi
φ[n, k]) =

n+
Mφ−1

2∑
m=n−

Mφ−1

2

d[m]φ[m − n] sin(−2πk
m

Mφ + Z
), (5)

and variance by

Var(Xr
φ[n, k]) = σ2

n+
Mφ−1

2∑
m=n−

Mφ−1

2

φ[m − n]2 cos(−2πk
m

Mφ + Z
)2(6)

Var(Xi
φ[n, k]) = σ2

n+
Mφ−1

2∑
m=n−

Mφ−1

2

φ[m − n]2 sin(−2πk
m

Mφ + Z
)2. (7)
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Fig. 1. Variations of α[n, k], for a STFT with a Blackman
window of 31 points, with a zero padding of 33. White points
are values of α between 0.485 and 0.515.

We notice that means of Xr
φ[n, k] and Xi

φ[n, k] are respec-
tively real and imaginary part of the STFT of d[m].

To compare the variances, we then define α[n, k] as the
ratio of the variance of the real part of the STFT to the sum of
the two variances

α[n, k] =
Var(Xr

φ[n, k])

Var(Xr
φ[n, k]) + Var(Xi

φ[n, k])
(8)

=

n+
Mφ−1

2∑
m=n−

Mφ−1

2

φ[m − n]2 cos(2πk
m

Mφ + Z
)2. (9)

Relation (3) induces

Var(Xr
φ[n, k]) + Var(Xi

φ[n, k]) = σ2. (10)

Using trigonometric identities, equation (9) writes

α[n, k] =
1

2
+

1

2

Mφ−1

2∑
p=−

Mφ−1

2

φ[p]2 cos(4πk
p + n

Mφ + Z
). (11)

When the frequency value is far enough from 0 and Mφ+Z

2
,

the frequency of the cosine function will be high enough com-
pared to the window variations to cancel the second term, so
the value of α[n, k] will be 1

2
. Otherwise, α[n, k] will dis-

criminate variances of Xr
φ[n, k] and Xi

φ[n, k]. Consequently,
a bias in the variance estimation appears and the spectrogram
coefficients do not have a χ2 distribution anymore.

Fig. 1 shows the variations of α along the time and fre-
quency indexes for a STFT computed with a Blackman win-
dow of length Mφ = 31 and with a zero padding of Z = 33.

This parameter extends the works of L.H. Koopmans [3],
N.L. Johnson and D.G. Long [4], who only determined that
the frequency bins where the spectrogram distributions com-
puted without zero padding do not match a χ2 distribution
are k = 0 and k =

Mφ

2
for a rectangular window and k = 0,

k = 1, k =
Mφ

2
and k =

Mφ

2
− 1 for a Hanning window.

3. NOISE ESTIMATION FROM REAL PART OF
STFT

In order to segment the time-frequency representation, we
need to know the noise level of x[m]. In this section we deter-
mine a variance estimator using real part of STFT coefficients
considering first that the deterministic part is null. Then we
study the effect of the unknown deterministic part on the esti-
mator.

3.1. Centered white Gaussian noise

We consider a signal x[m] (1) of length N0, where the deter-
ministic part d[m] is null.

The Maximum Likelihood (ML) estimator of the variance
σ2 is unbiased and optimal, and writes

σ̂2 =
1

N0

N0∑
m=1

x[m]2. (12)

We want to estimate σ2 with the real part of the STFT coeffi-
cients. In section 2 we saw that Xr

φ[n, k] has a non constant
variance equals to α[n, k]σ2, where α[n, k] is deterministic.
We thus define a new random variable of constant variance

Xr
φ[n, k]′ =

Xr
φ[n, k]√
α[n, k]

. (13)

Xr
φ[n, k]′ is a centered white Gaussian noise of variance σ2.

The variance can now be estimated as equation 12. The so-
build estimator from the real part of STFT coefficients is a
ML estimator, which is optimal and remains unbiased.

3.2. Deterministic signal embedded in a white Gaussian
noise

We now consider a general case where x[m] is a white Gaus-
sian noise of unknown mean d[m] (1).

Xr
φ[n, k] is a Gaussian variable of mean Dr

φ[n, k], the real
part of the STFT of d[m]. The mean of the rectified random
variable (13) is consequently

E
(
Xr

φ[n, k]′
)

=
Dr

φ[n, k]√
α[n, k]

(14)

which is unknown. In the context of a TFR segmentation of
an unknown deterministic signal, we cannot specify which
points are centered and which are not. When we estimate the
noise level, we will take non-centered points. ML estimator
thus overestimate σ2 as

E
(
σ̂2

)
=

1

NK

∑
n,k

E
((

Xr
φ[n, k]′

)2
)

(15)

= σ2 +
1

NK

∑
n,k

Dr
φ[n, k]2

α[n, k]
, (16)

where N and K are the number of time and frequency in-
dexes.
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4. TFR SEGMENTATION

For the model of signal (1), we showed in section 2 that real
and imaginary parts of STFT coefficients have a Gaussian
distribution, where the mean depends on the deterministic
part. The segmentation task consists in identifying coeffi-
cients with non-zero mean, which are points containing deter-
ministic signal, in order to reconstruct time-frequency regions
called spectral patterns. As seen in equation (16), non-zero
means overestimate the value of the noise variance. The idea
is to estimate local variances of (n, k) sites, and select with a
threshold depending on the estimated noise level the points of
highest variance.

4.1. Local variance distribution and threshold

As in [1], we consider a small cell of P points Cn,k, centered
on the (n, k) site of the real part of STFT. Local variance
estimator (12) of the rectified random variable (13) writes

σ̂2[n, k] =
1

P

∑
Cn,k

(
Xr

φ[n, k]′
)2

. (17)

The knowledge of the local variance distribution of points
without deterministic part allows us to propose a suitable thresh-
old to discriminate (n, k) sites without deterministic part from
others with a given false alarm probability pfa.

For (n, k) sites without deterministic part, (17) is a sum of
P squared centered Gaussian variables. If they are indepen-
dant, σ̂2[n, k] have a central σ2

P
χ2

P distribution. Due to STFT
construction, {Xr

φ[n, k]′} are correlated, we thus have

σ̂2[n, k] ∼
σ2

δ
χ2

δ (18)

where δ is an unknown degree of freedom, verifying δ ≤ P .
This distribution has two unknown parameters, σ2 which

depends on the analyzed signal, and δ which depends on the
STFT construction. By computing the STFT of a centered
white Gaussian noise of known variance, the only unknown
parameter of the χ2 distribution is δ, which can be estimated
with a maximum likelihood approach [2].

The second unknown parameter σ2 is estimated by ML
with equation (16). When the distribution (18) is fully esti-
mated, we define a threshold tσ2

tσ2 / Prob{σ̂2[n, k] > tσ2} = pfa, (19)

where pfa is a given false alarm probability. The use of this
threshold in a segmentation algorithm is described in the next
subsection.

4.2. Segmentation algorithm

The proposed algorithm is a region growing algorithm, ap-
plied to the TFR.

We first overestimate the noise variance over all the STFT
real part coefficients, which give the last unknown parameter
of the local variance distribution (18), and enable us to com-
pute the threshold tσ2 (19).

We then select (n, k) sites whose local variance is higher
than the threshold tσ2 to be candidates to the segmentation.
These sites are supposed to contain deterministic mean due to
equations (16) and (18).

Then, a "seed" with the highest local variance is choosen
among the candidates, associated with a given label l. If some
of its neighbours in the TFR are candidates, they become new
seeds of same label, which contaminate then their own neigh-
bours. Iteratively, we create so a spectral pattern of label l.

Once most of the candidates have been segmented, we
estimate noise variance again with only the unlabelized coef-
ficients. We thus obtain a less overestimated value. A new
threshold is then computed on the new estimated σ̂2[n, k] dis-
tribution, which gives new candidates to the segmentation.
Consequently, at each iteration the estimated noise level comes
closer to σ2, which allow to segment more points containing
deterministic part.

4.3. Segmentation control

We use two criterions in this algorithm in order to supervise
its performance. The first one is the Kolmogorov distance dk

[5] defined as

dk = sup |F ∗

n(x) − F (x)| , (20)

where F (x) represents the theoretical cumulative distribu-
tion function and F ∗

n(x) the empirical cumulative distribu-
tion function. The Kolmogorov distances on the unlabelized
points before and after contamination are compared to vali-
date a seed contamination. If the algorithm has effectively
segmented (n, k) sites containing deterministic signal, the un-
labelized points will converge to a Gaussian distribution and
dk will decrease.

Secondly, the kurtosis [6] defined as

K =
µ4

(σ2)
2
− 3, (21)

where µ4 is the fourth centered moment, is estimated on the
unlabelized points at each iteration, in order to stop the seg-
mentation when it reaches 0. Indeed, when the algorithm does
not have anymore deterministic signal to segment, the unla-
belized points have a zero mean Gaussian distribution, with
a null kurtosis. Moreover, it provides an indicator of execu-
tion of the algorithm. If the algorithm ends before the kurtosis
reaches zero, we know that all spectral patterns do not have
been segmented.

4.4. Segmentation results

Fig. 2 shows the result of a synthetic signal TFR segmenta-
tion. It’s a sum of a filtered noise of variance 1 and a frequency-
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(a) Spectrogram of a simulated signal
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(b) Segmentation result of the simulated signal

Fig. 2. Sum of a frequency-varying signal and a large band
signal. The spectrogram (a) is segmented (b) in three regions
from 0, set of points without deterministic signal, from 2.

varying cosine function of amplitude 0.5, embedded in a white
Gaussian noise of variance σ2 = 1

16
. The two spectral pat-

terns are correctly segmented, assigning label "1" to the frequ-
ency-varying signal and label "2" to the large band signal.

Fig. 3 presents a dolphin whistle segmentation. Given that
the recording noise is not white, we limited the TFR to a fre-
quency band of [0.2, 0.34] in order to have approximatively a
white noise. Six patterns are segmented, three of them having
more than one label.

5. CONCLUSION

We showed that STFT real and imaginary parts of a deter-
ministic signal embedded in a white Gaussian noise have two
different Gaussian distributions. The variances depend on the
(n, k) point of the STFT. An efficient estimator of the noise
variance in the real part was proposed. This estimator is used
in a new non-stationnary signal TFR segmentation, based on
local statistics of the STFT. Exemples with a simulated signal
and a dolphin whistle prove the efficiency of this approach.
Current works shows that this new algorithm provides less
false alarm patterns than [1].
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(a) Spectrogram of a dolphin whistle
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(b) Segmentation result of the dolphin whistle

Fig. 3. Whistle of a dolphin. The spectrogram (a) is limited to
the normalized frequency [0.2, 0.34] to have a white Gaussian
noise on the coefficients. Nine patterns are segmented (b).
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