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ABSTRACT 
In this paper, we discuss the relations among the random process, 

the Wigner distribution function, the ambiguity function, and the 

fractional Fourier transform (FRFT). We find many interesting 

properties. For example, if we do the FRFT for a stationary 

process, although the result in no longer stationary, the ampli-

tude of its covariance function is still independent of time. 

Moreover, for the FRFT of a stationary random process, the 

ambiguity function will be a radiant line passing through (0, 0) 

and the Wigner distribution function will be invariant along a 

certain direction. We also define the fractional stationary random 

process and find that a non-stationary random process can be 

expressed a summation of fractional stationary random processes. 

The proposed theorems will be useful for filter design, noise 

synthesis and analysis, system modeling, and communication.                             

                                                                                   

1. INTRODUCTION 

The Wigner distribution function (WDF) [2] is defined as:         

detgtgtW j
g 2/2/2/1, * . (1)      

The ambiguity function (AF) is defined as   

dtetgtgA jt
g 2/2/2/1, * . (2)    

The WDF and the AF are alike. They have the relation as            
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The fractional Fourier transform (FRFT) is defined as [4]:      

uG dttge
j t

j
tjuu

j
cot

2
csccot

2

22

2

cot1
. (4) 

It is a generalization of the Fourier transform (FT). (When  = 

/2, the FRFT becomes the FT). When =0, it becomes the iden-

tity operation. The FRFT can be applied for filter design, pattern 

recognition, optics analysis, communication, watermark, etc.  

The relations between the FRFT and the WDF / AF have 

been derived in [1][3].   

cossin,sincos, vuvuWvuW gG . (5)       

cossin,sincos, gG AA . (6)     

where Wg(u, v) and WG (u, v) are the WDFs of g(t) and G (u),

and Ag( , ) and AG ( , ) are the AFs of g(t) and G (u). Thus 

the FRFT corresponds to the counterclockwise rotation in the 

WDF plane and the clockwise rotation in the AF plane.      

In this paper, we discuss the relation between the FRFT and 

the WDF for the case where g(t) is a random process. We also 

use the result to define the “fractional stationary process”.  

We often use the covariance function Rg(u, ) and the 

power spectral density (PSD) Sg(u, ) to express the statistical 

properties of a random process [5]:        
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where E means the “expected value”. We set RG0(u, ) = Rg(u, )

and SG0(u, ) = Sg(u, ) to compare the result in Sec. 2. Note that, 

when = 0, the FRFT becomes the identity operation, i.e., .  

g(t)  = G0(u).                         

When the random process is stationary, i.e., the statistical prop-

erties do not change with u, we can simplify (7) and (8) as:          
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ugugERR gG  for any t,  (9) 

deRSS j
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.          (10) 

2. THE FRACTIONAL FOURIER TRANSFORM 

FOR A STATIONARY RANDOM PROCESS 
                                                                                   

Suppose that g(t) is a stationary random process and G (u) is the 

FRFT of g(t). Then the covariance function of G (u) is:
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Note that E[g(t)g*(t1)] = Rg(t – t1). Then we set             

t2 = t + t1,         t3 = t – t1,       (12) 

and (11) can be rewritten as:            
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From the fact that                                
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equation (13) can be simplified as           
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After further simplifying (15), we obtain the following theorem: 

[Theorem 1]: If G (u) is the FRFT of a stationary random proc-

ess g(t), then the covariance functions of G (u) and g(t) have the 

following relation:    

coscos

1
, tan

g
ju

G ReuR .    (16) 

Note that 

(a) The amplitude of RG (u, ) is independent of u. It is only 

dependent on . Thus G (u) is nearly to be stationary.   

(b) Moreover, in the case where g(t) is real, since Rg( ) is also 

real, we can conclude that            

tan,arg uuRG .         (17) 

In this case, we can use the phase of RG (u, ) to estimate the 

parameter  of the FRFT.           

(c) When  = 0, (16) becomes Rg( ).

[Theorem 2] If G (u) is the FRFT of a stationary random proc-

ess g(t), then the power spectral densities of G (u) and g(t) have 

the following relation:     

sincos, uSuS gG .   (18) 

It can be proven from (8), (16), and the scaling and modulation 

properties of the FT. Thus SG (u, ) is a scaling and shifting 

version of Sg(u, ) and the amount of shifting grows with u.

3. FRACTIONAL STATIONARITY  

Then we define the “fractional stationary” random process. 

For a random process, if the statistical property of G (u) (the 

FRFT with order  for g(t)) is independent of u:       
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we call it the order fractional stationary random process.

Note that the original stationary random process is the zero order 

fractional random process. The FRFT of order  for a stationary 

random process is an -  order fractional stationary random proc-

ess. In fact,  

[Theorem 3]: The FRFT with parameter  for an order sta-

tionary random process is an ( – ) order fractional stationary 

random process.  

We have known that the wave propagation in the optical 

system consisting of lenses [6] and in the graded-index fiber [7] 

can be expressed by the FRFT. Even if in the free space, when 

there is some impurities or the density of gaseous matter is not 

uniform, the free space will become a non-uniform medium and 

we may use the FRFT together with scaling and chirp multiplica-

tion to express it. A stationary random process will become a 

fractional stationary random process after propagating through 

these types of medium. Due to these reasons, in nature less of the 

random process is pure stationary. Instead, we may express them 

as the fractional stationary random process or a summation of 

fractional stationary random processes, see section 5.   

4. WDF AND AF FOR STATIONARY AND FRAC-

TIONAL STATIONARY RANDOM PROCESSES  

Suppose that g(t) is a random process. Its WDF is [9][10][11]     
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If g(t) is a stationary process, i.e., the random process whose 

statistical properties do not change with time, then (9) become     

,tWE g 2/gS .     (21) 

In other words, the WDF of a stationary process is independent 

of t and the slicing of the WDF along -axis is just the power 

spectral density of the stationary process.  

Moreover, the AF of g(t) is

dtetgtgEAE jt
g 2/2/2/1, *

                     dtetR jt
g ,2/1 .   (22) 

In the case where g(t) is stationary,      

dteRAE jt
gg 2/1, gR . (23) 

That is, Ag( , ) = 0 when  0. The AF of a stationary proc-

ess is a line along -axis.

Moreover, from (21) and (23), we obtain that  

[Theorem 4]: If G (u) The FRFT of a stationary random process 

g(t), then its WDF and AF are    

2/cossin, vuSvuWE gG ,          (24)      

cossinsincos, gG RAE . (25) 

They can be proven from (5) and (6) or from substituting (16) 

and (18) into (20) and (22).  
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Fig. 1  The WDF and the AF for a stationary random signal 

whose covariance function is Rg( ) = rect( /2). In (e)(f), we 

do the FRFT with  = /6 for the stationary random signal 

and find its WDF and AF.        
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In Fig. 1, we show an example to plot the WDF and the AF 

for a stationary random process whose covariance function is           

Rg( ) = rect( /2)        (26) 

    where rect(t/2B) = 1 if t  |B| and rect(t/2B) = 0 if |t| > B.

Its power spectral density is:                   

Sg( ) = 2 sinc(2 ) = sin(2 )/ .              (27)   

Moreover, from Theorem 4 and the fact that the  order frac-

tional stationary random process can be viewed as the FRFT 

with parameter -  for a stationary random process, we can con-

clude that        

[Theorem 5]: If g(t) is an  order fractional stationary random 

process, then  

(a) Its WDF E[Wg(t, )] is invariant along the direction of    

d1 = (cos , sin ).                             (28) 

That is, Wg(t1, 1) = Wg(t, ) if (t1, 1) = (t, ) + k(cos , sin ).

(b) Its AF E[Ag(t, )] is zero except for the case where  

   (t, ) = c d2     where d2 = (sin , cos )           (29)  

Note that d1 rotates with  in the counterclockwise direction and 

d2 rotates with  in the clockwise direction. d1 and d2 are sym-

metry respect to the line of t = .         
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Fig. 2  The WDF and the AF for a fractional stationary random 

process of order . Its fractional covariance function is 

RG ( ) = rect( /2) and  = /6 in (a)(b),  = /3 in (c)(d).      

In Fig. 2, we show the WDF and the AF for the fractional sta-

tionary random process of order  where 

)2/(rectRG .    ( GR  is defined in (19)), (30)   

Then we discuss the case where h(t) is a summation of frac-

tional stationary random processes:          

tgtgtgtgth k321  (31) 

where gn(t) is an (n) order stationary random process. Suppose 

that gn(t)’s are mutually independent:            

0)2/()2/( tgtgE nm    (32) 
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then we can prove that          
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In other words, if we calculate its WDF and AF, we obtain        
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Similarly,                     
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[Theorem 6]: If gn(t)’s are mutually independent fractional sta-

tionary random processes, then the WDF and the AF of g1(t) + 

g2(t) + g3(t) + ….. + gk(t) are just the summations of the WDFs 

and the AFs of gn(t)’s.
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Fig. 3 The WDF and the AF of h(t), where h(t) is a summation of 

two fractional stationary random processes.  

We give an example in Fig. 3, where h(t) = g1(t)+g2(t) and g1(t)

and g2(t) are –0.1  and 0.45  order fractional stationary random 

processes with RG ( ) = rect( /2). Note that, E[Wh(t, )] = 

E[Wg1(t, )] + E[Wg2(t, )] and E[Ah( , )] = E[Ag1( , )] + 

E[Ag2( , )], as the description in Theorem 6.     

5. DECOMPOSITION FOR NON-STATIONARY 

RANDOM PROCESS 

Theorems 5 and 6 lead to the following theorem: 

[Theorem 7]: Any non-stationary random process can be ex-

pressed as a summation of mutually independent fractional sta-

tionary random processes.  

(Proof): Suppose that h(t) is a non-stationary random process. 

First, we calculate the expected value of the AF: 

dteththEAE tj
h 2/2/2/1, * . (36)    

Then we can decompose E[Ag( , )] into:                
1

0

,
k

m

mmh drCAE                     (37) 

  where r = ( 2 + 2)1/2,  = arg(  + j ),                  

mmhm rrArC sin,cos , m = m/k,                

dm( ) = 1        when  (m-1/2)/k < (m+1/2)/k,         

dm( ) = 0        otherwise,    k .   (38) 

If k is very large, dm( ) will converge to          
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Then (37) can be rewritten as   
1

0

cossin,
k

m

mmmh rRAE      (40) 

 where krrrArR mmhm /sin,cos2 .     (41) 

Note that, from Theorem 5, Rm(r) ( sin m cos m) can be 

viewed as the AF of an /2 m order fractional stationary ran-

dom process. Then, together with Theorem 6, we can conclude 

that h(t) is a summation of k mutually independent fractional 

stationary random processes g1(t), g2(t), …., gk(t):        

tgtgtgtgth k321 ,        (42) 

krA

uGuGE

mmh

mm mm

/sin,cos2

2/2/ ,,
    (independent of u),  

m = /2  m/k.              # 

Although the stationary random process is popular in theory, 

in nature, most of the noises are non-stationary ones. Now, from 

Theorem 7, with the aids of the FRFT and the AF, we can de-

compose any non-stationary random process into a summation of 

fractional stationary random processes. It will be of a great help 

for signal processing, such as noise synthesis, system modeling, 

filter design, and improving the quality of signal transmission.      

For example, suppose that after several times of experi-

ments, we find that the transmitted signal x(t) is interfered by a 

non-stationary random process h(t). We also suppose that all the 

noise sources are stationary and h(t) is the mixture of them.  

First, we find the mean of the ambiguity function of h(t).

Then, we can use the procedure in (36)~(42) to decompose h(t)

into a summation of fractional stationary random processes:   

tgtgtgth
k21

     (43) 

where g k(t) is an k order fractional stationary random process, 

m = m/k, as in (38). Then h(t) can be synthesized as Fig. 4,     

  where )(tgOtn
m

m

m F .                   (44) 

Note that nm(t)’s are stationary random processes. We use Fig. (4) 

to model h(t) since
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From Fig. 4, we can estimate the locations of noise sources or 

the distribution of the medium in the path of signal transmission. 

It is also helpful for us to design a series of FRFT filters [8] to 

filter output the noise.      

6. CONCLUSIONS 

We introduced the relations among the random process, the 

ambiguity function, and the fractional Fourier transform. We 

find several beautiful properties. We also defined the fractional 

random process. We found that any non-stationary random proc-

ess can be decomposed into a summation of fractional stationary 

random processes. The proposed idea will be useful for commu-

nication, filter design, and system modeling.                       

Fig. 4  Using the FRFT to model the non-stationary random 

process h(t), where x(t) is the input signal, n1(t), n2(t), …., 

nk(t) are stationary random processes. 
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