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ABSTRACT

Blind source separation aims at recovering the original source sig-
nals given only observations of their mixtures. Some common ap-
proaches to the source separation problem include second or higher
order statistics based methods, and independent component analysis.
Most of these methods are developed in the time domain, and thus,
inherently assume the stationarity of the underlying signals. Since
most real life signals of interest are non–stationary, there have been
efforts to perform source separation in the time–frequency domain.
In this paper, we propose a new approach for source separation on
the time–frequency plane using an information–theoretic cost func-
tion. Jensen–Rényi divergence, as adapted to time–frequency distri-
butions, is introduced as an effective cost function to extract sources
that are disjoint on the time–frequency plane. The sources are ex-
tracted through a series of Givens rotations and the optimal rota-
tion angle is found using the steepest descent algorithm. The perfor-
mance of the proposed method is illustrated and quantified through
examples.

1. INTRODUCTION

Blind source separation (BSS) is an important and fundamental prob-
lem in signal processing with a broad range of applications. A num-
ber of BSS algorithms have been proposed based on the instanta-
neous mixture model, in which the observed signals are linear com-
binations of the source signals. Among these methods, the most
common ones are second order statistics based methods [1], and
information–theoretic approaches which utilize cost functions such
as mutual information or divergence measures, e.g. independent
component analysis (ICA) [2, 3]. These methods in general as-
sume a certain structure for the underlying source signals. For ex-
ample, higher–order statistics based methods assume non–Gaussian
and i.i.d source signals, whereas ICA assumes the independence of
the source signals.

Most real life signals are non–stationary, and thus do not obey
the underlying assumption of stationarity that is embedded in the
current methods. For this reason, recently various methods have
been introduced to exploit the non–stationarity of the source signals.
Researchers have resorted to the powerful tool of time–frequency
signal representations to solve the source separation problem. For
non–stationary signals, a blind separation approach using a spatial
time-frequency distribution is proposed in [4] and the separation is
achieved by joint diagonalization of the auto–terms in the spatial
time-frequency distributions.

In this paper, we introduce a new approach to the source sepa-
ration problem combining time–frequency representations with in-
formation–theoretic measures. An information–theoretic criterion,

Jensen–Rényi divergence as adapted to the time–frequency distribu-
tions, is used as the objective function to separate the sources. The
underlying sources are assumed to be disjoint on the time–frequency
plane and it is shown that this new cost function achieves its max-
imum when the signals are disjoint. With the assumption that the
source signals are disjoint on the time–frequency plane, signal sepa-
ration is performed through a rotation transformation using a steep-
est descent algorithm.

2. BACKGROUND ON TIME-FREQUENCY
DISTRIBUTIONS AND INFORMATION MEASURES

A time-frequency distribution (TFD), X(t, ω), from Cohen’s class
can be expressed as 1 [5]:

X(t, ω) =

� � �
φ(θ, τ)s(u +

τ

2
)s∗(u −

τ

2
)ej(θu−θt−ωτ)du dθ dτ,

(1)

where φ(θ, τ) is the kernel function and s is the signal. Some of the
most desired properties of TFDs are the energy preservation and the
marginals. They are satisfied when φ(θ, 0) = φ(0, τ) = 1 ∀τ, θ
and are given as follows:

� �
X(t, ω) dt dω =

�
|s(t)|2 dt =

�
|S(ω)|2 dω,

�
X(t, ω) dω = |s(t)|2 ,

�
X(t, ω) dt = |S(ω)|2.

(2)

The formulas given above evoke an analogy between a TFD and
the probability density function (pdf) of a two–dimensional random
variable. This analogy has inspired the adaptation of information–
theoretic measures such as entropy to the time–frequency plane [6].
Although entropy measures have proven to be useful in quantifying
the complexity of individual signals, they cannot be used directly to
quantify the difference between signals. For this reason, well–known
divergence measures from information theory have been adapted to
the time–frequency plane [7, 8]. One such distance measure is the
Jensen–Rényi divergence based on the Jensen difference. Jensen–
Rényi divergence is the modification of Jensen–Shannon divergence
from an arithmetic to a geometric mean introduced by Michel [7].
For time–frequency distributions, Jensen–Rényi divergence can be
defined as:

Gα
12(X1, X2) = Hα(

√
X1X2) − Hα(X1) + Hα(X2)

2
, (3)

1All integrals are from −∞ to ∞ unless otherwise stated.
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where Hα represents Rényi entropy defined on the time–frequency
plane as:

Hα(X) =
1

1 − α
log2

� �
�
��� X(t, ω)� �

X(u, v)du dv

�
���

α

dt dω,

(4)
where α > 0. Jensen–Rényi divergence is equal to zero when X1 =
X2, and its positivity can be proven using the Cauchy–Schwartz in-
equality. This measure has some desired properties such as being
symmetric and monotonically increasing as the overlap between the
two distributions decreases, i.e. Gα

12(X1, X2) → ∞ as X1(t, ω)×
X2(t, ω) → 0. Therefore, maximizing this measure corresponds to
obtaining disjoint time–frequency representations.

3. PROBLEM FORMULATION AND METHOD

3.1. Problem Statement in The Time–Frequency Domain

In this paper, we consider the problem of determining the source
signals when the number of observed mixtures is equal to or greater
than the number of the source signals. Assume that the M mixtures,
{s1(t), s2(t), · · · , sM (t)}, of the N non-stationary complex source
signals are given (M ≥ N ). Each mixture, si(t), is first transformed
to the time-frequency plane as:

Xi(n, ω; ψ) =
�
m

�
l

ψ(n−l, m)si

�
l +

m

2

	
s∗i

�
l − m

2

	
e−jωm.

(5)
The time-frequency distribution corresponding to each mixture is
vectorized and a matrix of time–frequency distributions is formed:

X =



����

X1

X2

...
XM



���� =



����

X1(1) · · · X1(Q)
X2(1) · · · X2(Q)

...
XM (1) · · · XM (Q)



���� , (6)

where Xi is a vector of length Q = K × L points, K and L are the
number of time and frequency points, respectively. The signals to be
separated on the time–frequency plane are defined as:

Y =



����

Y1

Y2

...
YN



���� =



����

Y1(1) · · · Y1(Q)
Y2(1) · · · Y2(Q)

...
YN (1) · · · YN (Q)



���� . (7)

In order to make the following discussions simpler, we concentrate
on the case where M = N . The discussions can be generalized for
M > N as illustrated through an example in Sect. 4.

The sources Y are extracted by applying a rotation transform
R(θ) in N–dimensions:

Y = R(θ)X. (8)

Rotation matrix is used for extracting the sources since any unitary
transform can be written in terms of rotation matrices and it provides
a convenient parametrization of the problem. The rotation angle θ is
adapted to maximize the following cost function:

Gα �

N−1�
i=1

N�
j=i+1

�
Hα(

�
YiYj) − Hα(Yi) + Hα(Yj)

2

�
. (9)

Maximizing this cost function will ensure that the extracted compo-
nents do not overlap with each other on the time–frequency plane.

3.2. Cost Function

The Jensen–Rényi divergence between two time–frequency distribu-
tions is defined as:

Gα
ij = Hα(

�
YiYj) − Hα(Yi) + Hα(Yj)

2
. (10)

This expression can be further simplified as:

Gα
ij =

1

1 − α
log

�
Q�

k=1

��
Yi(k)Yj(k)

	α

�

− 1

2(1 − α)

�
log

�
Q�

k=1

Y α
i (k)

�
+ log

�
Q�

k=1

Y α
j (k)

��

=
1

1 − α
log



���

�Q

k=1

��
Yi(k)Yj(k)

	α

���Q

k=1 Y α
i (k)

	��Q

k=1 Y α
j (k)

	


��� ,

(11)

which represents the ratio of the energy of the overlap between the
two TFDs to the product of the energy of the individual TFDs. Let

Jα
ij =

�Q

k=1

��
Yi(k)Yj(k)

	α

���Q

k=1 Y α
i (k)

	��Q

k=1 Y α
j (k)

	 , (12)

and

Jα =

N−1�
i=1

N�
j=i+1

Jα
ij . (13)

Since log is a monotonous function, maximizing Gα is equivalent to
minimizing Jα for α > 1, or maximizing Jα for α < 1. This means
that we can equivalently use Jα as our cost function. In this paper,
we will consider orders of α > 1. The results are similar for α < 1.
One special case of α > 1 is the quadratic one when α = 2. When
α = 2, the cost function Jα simplifies to:

J2 =

N−1�
i=1

N�
j=i+1



���

�Q

k=1Yi(k)Yj(k)���Q

k=1 Y 2
i (k)

	��Q

k=1 Y 2
j (k)

	


��� . (14)

In this paper, we will use α = 2 since the Rényi entropy will be
well–defined for this order even when the distributions are non-posi-
tive.

3.3. Rotation

In N–dimensional space the simplest rotation is in the two–dimen-
sional plane. If a rotation is through an angle θab in the a − b plane,
then the rotation matrix Rab(θab) is:

Rab(θab) =



������������

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos(θab) · · · sin(θab) · · · 0
...

...
. . .

...
...

0 · · · − sin(θab) · · · cos(θab) · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1



������������

,

(15)
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where Rab(θab) equals the N × N identity matrix IN except that
the elements IN (a, a), IN (a, b), IN (b, a), and IN (b, b) are replaced
by cos(θab), sin(θab),− sin(θab), and cos(θab), respectively, where
IN (a, b) is the element of IN located at the ath row and bth column.
From [9], we know that any N–dimensional rotation matrix can be
written as the product of N(N − 1)/2 two–dimensional–plane N–
dimensional rotation matrices,which is:

R(θ) = R12(θ12) · · ·Rab(θab) · · ·R(N−1)N (θ(N−1)N ), (16)

where θ = [ θ12, · · · , θab, · · · , θ(N−1)N ]T , and a < b.

3.4. Proposed Algorithm

The goal of the proposed algorithm is to determine the optimal ro-
tation transform such that the total pairwise divergence measure is
maximized to achieve signal separation. We use the gradient adapta-
tion algorithm also known as the steepest descent [10] to update the
rotation angles.

The overall update equation for stochastic gradient descent is:

θ(n + 1) = θ(n) − µ
∂J2

∂θ
, (17)

where µ is the step size parameter. The gradient of the cost function
J2 with respect to the rotation angle θab is derived as:

∂J2

∂θab

=

N−1�
i=1

N�
j=i+1

∂J2
ij

∂θab

, (18)

where

∂J2
ij

∂θab

=

�Q

k=1

�
∂Ri

∂θab
X(k)Yj(k) + Yi(k)

∂Rj

∂θab
X(k)

�
���Q

k=1 Y 2
i (k)

���Q

k=1 Y 2
j (k)

�

−
�Q

k=1 Yi(k)Yj(k)����Q

k=1 Y 2
i (k)

���Q

k=1 Y 2
j (k)

��3×

[

�
Q�

k=1

Yi(k)
∂Ri

∂θab

X(k)

��
Q�

k=1

Y 2
j (k)

�

+

�
Q�

k=1

Y 2
i (k)

��
Q�

k=1

Yj(k)
∂Rj

∂θab

X(k)

�
],

(19)

where Ri is the ith row of R(θ), and X(k) is the kth column of X.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In order to evaluate the effectiveness of the proposed method, we
consider the following source separation examples. The sources are
assumed to be approximately disjoint on the time–frequency plane,
and issues regarding the accuracy of the extracted sources, conver-
gence rate and robustness to noise are discussed.

Example 1: Separation of a chirp signal and two Gabor logon
signals
In this example, we consider the separation of three source signals.
A chirp signal is added to the mixture of two Gabor logons. The
linear chirp signal has an initial normalized frequency of -0.2 and
its instantaneous frequency increases to a normalized frequency of
0.2. The first Gabor logon is centered at the time sample point 50

and normalized frequency of 0.7, and the second Gabor logon is
centered at the time sample point 150 and normalized frequency of
−0.7. Three mixtures of these three source signals are given. Each
combination is transformed to the time–frequency domain using a
binomial kernel [5] with K = 50 time samples and L = 64 fre-
quency samples. Each TFD is vectorized to form a TFD observation
matrix of size 3 × 3200. It is known that the chirp signal overlaps
with these two Gabor logons in the time domain, so it is not possi-
ble to separate them using time domain decomposition approaches.
However, it is illustrated in Fig. 1 that these three signals can be ef-
fectively extracted using the proposed method on the time–frequency
plane. Moreover, the convergence rate is high as shown in Fig. 2.
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Fig. 1. The mixture and the separation of a chirp and two Gabor
logons: (a) the mixture, (b) and (d) the two extracted Gabor logons,
(c) the extracted chirp

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

C
o
s
t 

F
u
n
c
ti
o
n

Fig. 2. The cost function versus the number of iterations

Example 2: Separation of two crossing chirp signals
In this example, we consider the separation of two signals overlap-
ping in the time–frequency domain. A mixture of two linear chirp
signals is used for source separation. One of the chirp signals has
an initial normalized frequency of -0.8 and its instantaneous fre-
quency increases to a normalized frequency of 0.8. The other one
has an initial normalized frequency of 0.8 and its instantaneous fre-
quency decreases to a normalized frequency of -0.8. Obviously,
these two chirp signals overlap with each other in both the time and
frequency domains. Typical time domain or frequency domain sep-
aration methods can not be used to perfectly recover them. Fig. 3
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shows that using the proposed approach, we can successfully sepa-
rate these two chirp signals from their mixtures.
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Fig. 3. The mixture and the separation of two crossing chirp signals:
(i) the mixture, (ii) and (iii) the separated signals

Example 3: Performance comparison with FastICA

In order to evaluate the performance of the proposed approach, we
compare it with FastICA on the time–frequency plane. The Mean
Squared Error (MSE) is applied as the performance criterion, which
is defined as:

εY =
1

N

N�

i=1

‖ Ŷi − Yi ‖2

‖ Yi ‖2
, (20)

where Yi is the original source signal, Ŷi an estimate of this source
signal, and N is the number of the source signals. We compare the
MSE of the proposed algorithm with FastICA in the time–frequency
domain for the signals discussed in Example 1 by adding white Gaus-
sian noise over a SNR range of 2–18 dB. We use 100 Monte Carlo
simulations for each noise level. It is evident from Fig. 4 that the
proposed method has smaller MSE compared to FastICA. The dif-
ference in performance is due to the fact that the given sources are
not necessarily independent and thus do not fit the assumptions un-
derlying ICA.
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Fig. 4. Error performance of the proposed method and FastICA ver-
sus SNR

5. CONCLUSIONS

In this paper, a new approach is presented for the separation of non–
stationary signals on the time–frequency plane using an information-
theoretic cost function. The proposed algorithm performs an N–
dimensional rotation to separate the source signals. Using Jensen–
Rényi divergence as the cost function, a steepest descent algorithm
is implemented to update the rotation angles. Several examples are
given to illustrate the performance of the proposed algorithm. Issues
regarding convergence rate and robustness under noise are investi-
gated. The results illustrate that maximizing the divergence on the
time–frequency plane can separate sources that are disjoint in the
time–frequency domain, and is better than the mutual information
cost function used in ICA in terms of fidelity to the original sources.

Future work includes investigation of the effect of order α in
the Jensen–Rényi divergence on the performance of the source sep-
aration algorithm, and extending the algorithm to a more challeng-
ing case, i.e., the number of mixtures is smaller than the number
of sources. Another area of future work is using signal synthesis
methods to transform the extracted sources from the time–frequency
domain to the time domain.
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