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ABSTRACT

This paper presents e cient algorithms for the analy-
sis of non-stationary multi-component signals based on
modified local polynomial time frequency transform. The
signals to be analyzed are divided into a number of seg-
ments and the desired parameters are estimated in each
segment for computing modified local polynomial time
frequency transform. Compared to other reported algo-
rithms, the length of overlap between consecutive seg-
ments is reduced to minimize the overall computational
complexity. The concept of adaptive window lengths is
also employed to achieve a better time-frequency resolu-
tion for each component.

1. INTRODUCTION

Due to its superior performance in dealing with non-
stationary signals, time frequency transforms (TFT s)
have found various applications in many areas includ-
ing communications, multi-media, mechanics and biol-
ogy [1]. The most popular and simplest TFT is short
time Fourier transform (STFT ) that has been widely
used for many practical applications [1,2]. Nevertheless,
the STFT su ers from low resolution when the analyzed
signal is highly non-stationary. Local polynomial time
frequency transform (LPTFT ), referred as the general-
ization of STFT , was reported to provide high resolution
for non-stationary signals [3, 4] with a local polynomial
function approximating to the frequency characteristics.
Unfortunately, the estimation of a number of extra pa-
rameters required by LPTFT computation results in a
heavy computational load.

This paper presents analysis algorithms for time vary-
ing multi-component signals containing white Gaussian.
Di erent from previously reported algorithms, the pro-
posed modified local polynomial time frequency trans-
form (MLPTFT ) reduces the overlap length between
consecutive segments to minimize the number of seg-
ments to be processed. E ective methods of estimat-
ing the MLPTFT parameters from each signal segment
are presented. Deterioration of resolution due to the re-

duction of overlap length is avoided by using adaptive
window lengths.

2. MODIFIED LPTFT

2.1. Segmentation

The signal with noise to be analyzed is defined as

x(t) = s(t) + w(t), 0 t N 1 (1)

where w(t) represents white Gaussian noise and s(t) con-
tains mono- or multi- nonstationary components in the
time frequency domain. It is assumed that the sampling
frequency of the discrete data is normalized to be one Hz
and parameter t takes integer values. The input signal
x(t) is divided into many small segments with a win-
dow function h( ) in the time domain. The jth signal
segment is defined as

xj = x[j(Q ) + ] h( ),

where 0 j N/(Q ) 1, 0 Q 1,
(Q 1)/2 (Q 1)/2, x is the function to return

the largest integer that is equal to or smaller than x, N
is the length of signal x(t), Q, which is assumed to be
an odd number without loss of generality, is the length
of the window h( ) or equivalently the length of the sig-
nal segment and represents the length of the overlap
between the consecutive signal segments. Fig 1 shows
examples for =0, Q 1 and (Q 1)/2 with Q = 5.
Heavy computational complexity is needed for estimat-
ing the extra parameters required by LPTFT computa-
tion if the overlap length is large because the number of
signal segments to be processed is accordingly increased.

2.2. The MLPTFT

The local polynomial time-frequency transform (LPTFT )
of x(t) is defined as [3]

LPTFT (t, f) =
=

x(t+ )h( )

e j2 [ M
m=2

lm 1(t)
m

m!
+f ], (2)
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Fig. 1. Segmentation examples for overlap length = 4, 2 and 0 and window length Q = 5

where h( ) is the window function with length Q, and
l(t) = [l1(t), · · · , lM 1(t)] are the parameters related to
the derivatives of the instantaneous frequency of x(t)
[3]. The LPTFT is based on the idea of fitting an
(M 1)th order polynomial function approximation of
the frequency of xj , defined in (2) with = Q 1, to
determine the nonparametric characteristic of the signal
[3]. In addition to the calculation of (2), other processing
costs for the LPTFT are for the estimation of both the
time-varying parameter l(t) and window length Q.
The LPTFT cannot be directly used for signals con-

taining multiple components because individual signal
components have their own parameter l(t) and window
length Q. Let us define the MLPTFTp for signals con-
taining p components with sets of parameters L(t) : {li(t);
1 i p} and window length Q : {Qi; 1 i p} as

MLPTFTp(t, f) =
=

1

a
x(t+ )e j2 f (3)

p

i=1

hi( )e
j2 M

m=2
li,m 1(t)

m

m! ,

where a = ||
p

i=1 hi( )e
j2 M

m=2
li,m 1(t)

m

m! ||2 is the
scaling factor keeping the signal energy unchanged and
|| · ||2 is the 2-norm operation in terms of .

3. ESTIMATION OF L(T )

In the previously reported methods, the overlap factor
equals Q 1 which means that there are N segments

of length Q for an N -point input sequence. In general,
severalMLPTFTps with di erent sets of parameters are
computed for each signal segment. For segment xj , for
example, the L(j) that yields the maximum value [2] or
values larger than a threshold [4] is selected. Because

two consecutive signal segments overlap heavily, i.e., two
adjacent signal segments di er by only one data point,
this method requires a large computational load [4].

To reduce the overall computational load, it is neces-
sary to minimize the length of overlap between consecu-
tive segments, such as < Q 1. For segment xj , the
set of parameters L(j(Q + )) within the duration
(Q 1)/2 (Q 1)/2 is estimated

simultaneously. As shown in Fig. 1 that the parame-
ters for the shaded data intervals are estimated from the
corresponding signal segment. For example, L(2), L(3)
and L(4) are estimated from segment x2 when = 2 in
Fig. 1(b). In this way, only N/(Q ) , instead of N
signal segments, are processed to acquire L(t) at all time
instants. Generally, controls the tradeo between the
computational load and the smoothness of the spectrum.
When = 0, there is no overlap and only N/Q seg-
ments are processed, which reduces the computational
load Q times compared with that with = Q 1 in the
previously reported method. In general, the MLPTFTp
with L(t) estimated with = 0 yields satisfactory perfor-
mance to achieve a good polynomial function approxima-
tion to the frequency components if the window length
Q is small enough, which is further illustrated in the first
experiment of Section 5.

The coe cients of the polynomial function model used
to achieve L(t) [3] are estimated by searching the peak
locations of the polynomial Fourier transform (PFT ) of
the signal segment. The PFT of xj is defined as

PFT (xj , a) =
t=

xje
j2 ( M

m=1
amt

m) (4)

where a = {a1, · · · , aM}. It is assumed that p peaks are
found in the PFT indicating the p components and are
located at positions ai = {ai,1, · · · , ai,M}, 1 i p.
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4. WINDOW LENGTH ESTIMATION

In the previous section, L(t) is estimated based on the
idea of modelling each segment as an Mth-order poly-
nomial phase signal. Therefore, the window length used
in the MLPTFTp or RMLPTFTp is the same as the
length of the segment. It is known that there is a trade-
o between the window length and the resolution of the
MLPTFTp [5]. In general, approximation errors in-
crease with the window length if the order of theMLPTFTp
is lower than that of the phase of the signal segment. For
polynomial phase component whose order is not higher
than that ofMLPTFTp, on the other hand, theMLPTFTp
gives a better resolution if longer window (or segment) is
used. For a good compromise, it is always desired that
the length of the segment is adaptively matched to the
characteristics of the signal components. In our analysis,
the initial window length is selected to be small enough
to provide acceptable accuracy of the approximation and
the actual length of the window is increased according to
the properties of consecutive signal segments.
Since we intend to increase the window length if con-

secutive segments have the same polyphase model, let
us assume that two consecutive segments, the jth and
(j+1)th segments, belong to the same polynomial phase

model. If the jth segment has the phase 2
M

m=0 ki,mt
m,

the phase of the (j+1)th segment should be 2
M

m=0 ki,m
(t+ (Q ))m because the (j + 1)th segment is delayed
by a time interval of the segment overlap compared with
that of the jth segment. The di erence between the co-
e cients of the consecutive segments is calculated by

M

m=0

ki,m(t+ (Q ))m
M

m=0

ki,mt
m

=

M

m=0

ki,m

m

s=0

Csmt
s(Q )m s

M

m=0

ki,mt
m

=

M

m=0

m 1

s=0

ts(Q )m s (5)

where Csm = s!/(m!(m s)!). For clarity of presentation,
we define

M

m=0

bmt
m =

M

m=0

m 1

s=0

ts(Q )m s (6)

where bm is the constant coe cient associated with tm

term on the right side of (6). Let us represent the co-
e cients of the polynomial function estimated from the
jth and (j+1)th segments with aj,m and aj+1,m, respec-
tively, where 1 m M . The di erence (aj+1,m aj,m)
is compared with bm. If each |aj+1,m aj,m bm| is
smaller than a predefined threshold Tm, these two seg-
ments have the same polyphase model and the length of

the window increases by Q . The final window length
is the total length of the consecutive segments that have
the same polynomial function model.
It can be easily seen that compared with algorithm

reported in [3], the computational complexity for L(t)
estimation is significantly reduced. This is because, with
the segmentation method shown in Fig. 1, the number
of segments for an N -point sequence is reduced to be
N/(Q ) in comparison with N segments needed in
[3]. The estimation of window lengths requires overheads
for computation of (5) and the costs of comparison with
the given threshold is trivial.

5. EXPERIMENTAL RESULTS

Two types of signals, which contain mono- and multi-
component, respectively, are used to test the performance
of the proposed algorithms. For simplicity, the 2nd-order
MLPTFTp is used in all experiments dealing with the
input sequence x(t) with N = 512.
The first type of signal contains mono-component de-

fined as:

x1(t) = exp( j(256/ )cos( 2 t/256)) + w(t). (7)

Fig. 2. The comparisons between MSEs from
MLPTFTp with di erent and Q.

The estimation of instantaneous frequency of x1(t)
is conducted with Gaussian noise w(t) of di erent vari-
ances. Monte Carlo simulations are performed to obtain
the mean square error (MSE) for each estimator. The

MSE is defined by 1
N

N 1
t=0 (f̃(t) f(t))2), where f(t)

is the true instantaneous frequency and f̃(t) is the es-
timation of f(t) according to the curve peak positions
in the MLPTFTp of x1(t). The MSEs are compared
for di erent overlap lengths = 0, Q/2 , Q/3 and
Q 1, as shown in Fig. 2. A large range of window
lengths (6 < Q <80) have been tried. Only the results
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using Q = 23, Q = 33 and Q = 43 are shown because
the MSEs achieved with these windows are mostly be-
low 10 2. It is observed that for high SNRs, smaller
window length generally gives smaller MSEs, for exam-
ple, the curve for Q = 23 gives the best performance
when SNR > 7 dB. With low SNRs, i.e., SNR 7
dB, larger window length yields lower MSEs, as seen
from Fig. 2. This is because that MSEs are mainly
influenced by the bias and the variance of the input se-
quence [3]. When SNR is high, the MSE is mainly
a ected by the bias which increases with the increase
of window length. When SNR is low, the variance of
the signal is the dominant factor a ecting the MSE. The
variances decrease with the increase of window length so
that theMSE becomes relatively small. It is worth men-
tioning that, When SNR is extremely low, e.g., below 0
dB, MSEs deteriorate significantly. This is because the
windows used in our proposed MLPTFTp are generally
with smaller length. The use of narrow window leads to
the increasing influence of noise especially for low SNR.
The most important observation made in Fig. 2 is that
the MSE performances for di erent overlap lengths are
very close to each other regardless of the window lengths,
which leads to the conclusion that the decrease of overlap
length between segments does not deteriorate the perfor-
mance of MLPTFTp.
Let us consider the signal contains multiple compo-

nents, which is defined as:

x2(t) = exp( j(256/ )cos( 2 t/256)) +

exp( j.002 t2) + exp( j.002 t2 +

0.06 t) + w(t) (8)

where w(t) is the Gaussian noise with SNR = 0 dB. This
signal is used to test the performance of using adaptive
window lengths. Fig. 3 shows the MLPTFTps of x2(t)
that are computed with and without using adaptive win-
dow lengths. By comparing the di erence between the
estimated parameters in the consecutive segments with
bm in (6), the window length of the algorithm is enlarged
to N to obtain a high resolution. It is shown that the
resolution in Fig. 3(b) for the linear component of x2(t)
is improved significantly and the two parallel chirp com-
ponents are clearly distinguished in comparison with Fig.
3(a) in which the window length is fixed.

6. CONCLUSION

This paper presents analysis algorithms e ectively deal-
ing with time varying multi-component signals. In par-
ticular, these algorithms allow the reduction of compu-
tational complexity by minimizing the length of overlap
between consecutive signal segments. Experiments show
that by using the proposed algorithms of parameters esti-

Fig. 3. Performance comparisons

mation and adaptive window length, the signals contain-
ing both single and multiple components with Gaussian
and impulse noises can be more accurately represented
in the time-frequency domain.
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