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ABSTRACT

This paper establishes a new coherent framework to extend the class
of unitary warping operators [1] to the case of discrete–time se-
quences. Providing some a priori considerations on signals, we
show that the class of discrete–time warping operators finds a nat-
ural description in linear shift–invariant spaces. On such spaces, any
discrete–time warping operator can be seen as a non–uniform wei-
ghted resampling of the original signal. Then, gathering different re-
sults from the non–uniform sampling theory, we propose an efficient
iterative algorithm to compute the inverse discrete–time warping op-
erator and we give the conditions under which the warped sequence
can be inverted. Numerical examples show that the inversion error
is of the order of the numerical round–off limitations after few itera-
tions.

1. INTRODUCTION

Signal processing methods are often based on a change of the rep-
resentation space. This change is generally performed by projecting
the original space into another one, adapted to a particular class of
signals. The underlying idea is that some spaces are better suited
than others to highlight specific properties of signals. As a conse-
quence, it is a natural feature to perform processing tasks on the pro-
jected space since the useful information is easily reachable. As a
final step, a well–defined inverse projection allows to return back to
the original domain. This projection–processing–inversion frame-
work has been successfully used in various signal processing do-
mains [2].

An interesting class of unitary projections is the class of time
warping operators [1]. This class has been used in image process-
ing [3] for non–linear coordinate transformations and morphing pur-
poses. In signal processing, warping operators have been used to
build time–frequency representations with reduced interference terms,
the so–called VU–Cohen’s class [1]. Despite some other applica-
tions, the reversibility property of the time warping operators has
surprisingly not found signal–processing applications as is the case
for other unitary transforms. Recently, we have shown that a projection–
processing–inversion framework, in time–warped spaces, can be used
for efficient non–stationary denoising purpose [4]. Still, because of
our non–exact approach, cumulative errors led to inaccurate results
in multi–stages processing.

As far as our knowledge, an extension of the class of time warp-
ing operators, while keeping in mind invertibility, has not been de-
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rived yet in the case of discrete–time signals. We believe that this
lack may explain the small number of signal–processing methods
based on this class of operators. As an attempt to fill this lack, this
paper establishes a new coherent framework to extend the class of
warping operators in the case of discrete–time sequences and derive
an efficient implementation of the inverse operator as well as its in-
vertibility conditions.

The organization of this paper is as follows. Section 2 starts with
the classical definition of the class of continuous time–warping op-
erators and describes its mathematical properties. Then a discrete–
time formulation is proposed in shift–invariant spaces. Section 3
states the equivalence between inversion of the discrete–time warp-
ing operator and the inversion of a resampling operator. Gathering
different results from the non–uniform sampling theory, an efficient
iterative implementation is proposed, and invertibility conditions on
the resampling set are derived. Numerical and convergence results
are given section 4, and concluding remarks are given section 5.

2. CLASS OF UNITARY TIME–WARPING OPERATORS

2.1. Continuous formulation

Given x(t) ∈ L2(R), the set of unitary time–warping operators
{W, w(t) ∈ C1, ẇ(t) ≥ 0 : x(t) → (Wx)(t)}, is defined in
[1] by

(Wx)(t) = |ẇ(t)|1/2
x (w(t)) , (1)

where ẇ(t) stands for the derivative of the warping function w(t)
with respect to t. Properties of this transformation include linearity
and unitary equivalence since the envelope |ẇ|1/2 preserves the en-
ergy in the signal at the output of W . Because of the latter property,
it is straightforward to state the existence of the inverse warping–
operator

(W−1
x)(t) = |ẇ(w−1(t))|−1/2

x w
−1(t) . (2)

2.2. Discrete formulation

For real–life applications, the continuous formulation of the class
of warping operators defined in Sec. 2.1 has to be turned into a
discrete formulation. Let x[n] ∈ R

N , n = 0, . . . , N − 1 be
the sequence obtained by uniform sampling of the continuous sig-
nal, x[n] =

t
x(t)δ(t − nT )dt with T the sampling rate, and

xW [m] ∈ R
M , m = 0, . . . , M − 1 be the warped discrete se-

quence. Since we are now dealing with finite–length sequences, we
shall restrict ourself to the class of warping functions defined in the
interval [0, (N − 1)T ], for which w(0) = 0, and w(nT ) = nT .
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For the sake of notation simplicity, we denote by m the normalized
sequence m/(M − 1), m = 1 . . . M − 1. Then a straightforward
definition for the sampled discrete–time warping operators is

(Wx)[m] = |ẇd (m)|1/2 x (wd (m) (N − 1)T ) , (3)

where the warping function wd(t) is defined by {wd : [0, 1] →
[0, 1] ∈ C1| wd(0) = 0, wd(1) = 1, ẇd(t) ≥ 0}. From this defini-
tion, the computation of the discrete–time warping operator requires
samples x (wd (m) (N − 1)T ). However, from the sequence x[n],
only samples x(nT ) are known and the recovery of the missing sam-
ples has to deal with this partial knowledge.

From the Shannon’s theory [5], it is well known that any ban-
dlimited signal can be exactly recovered from its uniform samples
with the so–called sinc interpolator by

x(t) =
n

x[n]sinc(t − nT ), (4)

where sinc(t) = sin (πt) /πt. However this method is generally
not used because of the slow decay of the sinc function with order
O(1/x) which is not well–suited for practical applications.

More powerful methods can be found in an interpolation per-
spective [6]. One of those is the general class of interpolators in
linear shift–invariant spaces.

A linear shift–invariant space Vφ is uniquely determined by the
kernel φ with Vφ = Span({φ(. − k), k ∈ Z}). The general inter-
polation formula on Vφ is given by [7]

x =
k∈Z n

x[n]ψ(k − n)

ak

φ(. − kT ), (5)

where ψ is the impulse response of some projection filters, and the
coefficients (ak) are the result of the filtering. In the scope of this pa-
per we shall restrict ourself to the case of exact interpolation, which
is equivalent to x[n] = x(t)|t=nT , n = 0..N − 1. The latter con-
dition is met, in the shift–invariant space Vϕ generated by the kernel
ϕ(.) = k∈Z

ψ(k − n)φ(. − kT ), k ∈ Z, t ∈ R, if and only if ϕ
verifies the exact interpolation condition

ϕ(nT ) =
k∈Z

ψ(k − n)φ(nT − kT ) = δn,0, ∀nZ, (6)

where δn,m denotes the Kronecker delta function. This interpolation
method allows a degree of freedom on the choice of the interpolation
kernel ϕ(t). In truth, this choice is a matter of a priori considera-
tions on the signal x(t). If one deals with bandlimited signals then
ϕ(t) = sinc(t) has to be chosen to recover Equ. 4. On the other
hand, if the signal x(t) can be modelled by a spline, then the cardi-
nal B–spline [7] is the optimal choice.

Let S : {x[n]} → xS [m], n = 0..N − 1, m = 0..M − 1 be
the resampling operator on the shift–invariant space Vϕ defined by

xS [m] = (Sx)[m] =
n

x[n]ϕ(f(m) − n), (7)

for some resampling mapping f . Defining nm = f(m) = (N −
1) w (m), the set X = {nm}, m = 0..M − 1 is a non–uniform
sampling set for the Vϕ space. This gives the final expression for the
class of discrete–time warping operators

xW [m] = (Wx)[m] = |ẇd (m)|1/2 xS [m], (8)

which can be seen as a weighted resampling in Vϕ of the sequence
x[n].

3. DISCRETE-TIME INVERSE WARPING OPERATOR

3.1. Problem statement

Our starting point is the definition of the discrete-time inverse warp-
ing operator W−1

(W−1(Wx))[n] � x[n]. (9)

Then, defining S−1 the inverse sampling operator, and using Equ. 8
leads to

(W−1xW)[n] = (S−1 |ẇd (m)|−1/2 xW [m])[n]. (10)

Inversion of the discrete-time warping operator resumes to the in-
version of the sampling operator which is a difficult task in shift–
invariant spaces for any kernel function.

3.2. Equivalence in non–uniform sampling theory

The problem of recovering a signal x ∈ V from a non–uniformly
distributed set of samples is generally referred as a non–uniform
sampling problem [8].

It can be shown that if the maximal gap between the samples
nm, nm+1, is small enough, then any x ∈ Vϕ can be recovered
from the set {xS [m]}, and one says that the sampling set X is stable
in Vϕ. Conditions on X to be stable in Vϕ are discussed in Sec. 3.3.
Then, from [8] and [9] we derive the following iterative algorithm of
the inverse sampling operator.

Alg. 1 (Inverse sampling operator). Let ϕ(.) be a kernel for the
shift–invariant space Vϕ. For all ϕ(t) verifying

n

sup
t∈[0,1]

|ϕ(t − n)| < ∞, ∀ n ∈ Z, t ∈ R, (11)

ϕ(t)|t=nT = δn,0, ∀n ∈ Z, t ∈ R, (12)

and providing X = {nm}, m = 0..M − 1 a stable sampling set in
Vϕ, the uniform samples x[n], n = 0..N − 1 for all x ∈ Vϕ can be
recovered by the following iterative algorithm.

� Initialization

x(0)[n] = xS [k], k = argmin
m

{|n − nm|}

x
(0)
S

[m] =

N−1

n=0

x(0)[n]ϕ(nm − n)

� Until ‖x(p) − x(p−1)‖2 < ε do

∆x(p)[m] = xS [k] − x
(p−1)
S

[k], k = argmin
m

{|n − nm|}

x(p)[n] = x(p−1)[n] + ∆x(p)[n]

x
(p)
S

[m] =

N−1

n=0

x(p)[n]ϕ(nm − n)

� End

and limp→∞ x[n] − x(p)[n]
2

= 0 with a geometric convergence.
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3.3. Maximal gap between samples

It is obvious that a signal x ∈ Vϕ is not always uniquely deter-
mined for all sampling set X = {nm}, m = 0..M − 1, especially
if X contains large gaps. In the case of bandlimited function the
Beurling–Landau’s theorem [10] provides a condition on X to be
stable. However, in the case of shift–invariant spaces, this result
does not hold anymore and the exact conditions on X to be stable in
Vϕ are unknown so far. Recently, under–optimal stability conditions
have been determined for shift–invariant spaces in [9].

Let Bm be the δ–ball defined by

Bm = {x : |nm − x| ≤ δ}, x ∈ [0, N − 1]. (13)

We define the maximal gap the smallest δ such that

m

Bm = [0, N − 1]. (14)

Then it can be shown that the upper bound

δ <
π Gϕ(ω)

T Gϕ̇(ω)
0

, (15)

guarantees the sampling set X to be stable in Vϕ. The functions
Gϕ(ω) and Gϕ̇(ω) are both related to the Fourier transform ϕ̂(ω) of
the kernel function ϕ(t) by

Gϕ(ω) =
k

|ϕ̂(ω + 2kπ)|2
1/2

, (16)

Gϕ̇(ω) =
k

|jω ϕ̂(ω + 2kπ)|2
1/2

. (17)

Because Gϕ(ω) and Gϕ̇(ω) are both 2π–periodic, the norm ‖.‖0 is
given by ‖G.(ω)‖0 = inf

ω∈[0,2π]
G.(ω).

Since the maximal gap is equal to supm |nm+1 − nm|/2, it is
easy to show that

sup
m

|nm+1 − nm| ≤ sup(ẇd(t))
t∈[0,1]

2 (N − 1)

M − 1
≤ δ, (18)

and to establish the under–optimal stability condition on M

M > 2 (N − 1) sup(ẇd(t))
t∈[0,1]

π Gϕ(ω)

T Gϕ̇(ω)

−1

0

+ 1 > N. (19)

Then for any sequence Wx[m], conditions under which the discrete–
time warping operator can be inverted only depend on the kernel
function and the maximum of the derivative of the warping function.

4. EXPERIMENTAL RESULTS

We illustrate, in this section, our method on a numerical example.
We consider here the shift–invariant space Vϕa generated by

ϕa(t) = sinc(t) cos
πt

2a

2

Π[−a,a](t), (20)

where the function Π[−a,a](t) = 1, t < |a|, 0 otherwise. ϕa(t)
has to be seen as an approximation of the sinc function in the sense
that lima→∞ ϕa(t) = sinc(t). This kernel belongs to the class of
windowed–sinc interpolators [3] and is generally preferable to the
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(a) x[n]: original sequence.
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(b) |STFT(x[n])|: spectrogram of
the original sequence.
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(c) xW [m]: time–warped sequence.
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(d) |STFT(xW [n])|: spectrogram
of the time–warped sequence.
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(e) x[n]− W−1 (Wx) [n]: recon-
struction error.
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(f) ẇd(t): Derivative of the warping
function.

Fig. 1. Numerical example of discrete–time warping operators. In
this example N = 200, M = 320 and a = 5. (a)(b) original cosine
sequence. (c)(d) time–warped sequence. (e) reconstruction error
between the original sequence and the sequence recovered from the
warped sequence after 45 iterations. (f) derivative of the warping
function.

sinc function since it has a compact support and leads to a reduction
of the ringing artifacts.

For any a < ∞ it is obvious that ϕa(t) verify Equ. 11 and
Equ. 12, and the iterative algorithm always converges for a stable set
X .

The sequence x[n] = cos(2π50n), n = 0, . . . , 199 is first gen-
erated. The discrete–time warping operator we use is defined by
the warping function wd(t) = t + 0.04 sin(4πt). The warped se-
quence xW [m], m = 0, . . . , 319 is generated with ϕ5(t) by means
of Equ. 8. Then we use Equ. 10 and Alg. 1 to recover the original
sequence x[n]. Results of the numerical simulation are depicted in
Fig. 1.

Fig. 1(a) shows the original discrete–time cosine sequence and
Fig. 1(b) its time–frequency representation. Fig. 1(c) shows the
warped sequence and Fig. 1(d) its time–frequency representation.
The instantaneous frequency of the warped sequence is cosine mod-
ulated. This non–linear modulation effect comes from the derivative
of the warping function represented Fig 1(f). Fig. 1(e) shows the dif-
ference between the original sequence and the sequence recovered
with the inverse–warping operator after 45 iterations. As seen, the
maximal reconstruction error is of the order of the round–off preci-
sion we used (ε ≈ 2.22 10−16 in our example).

III ­ 414



0 50 100 150 200

-600

-500

-400

-300

-200

0

-100

M = 350 M = 313 M = 303 M = 284

Number of iterations

ε r
:

R
ec

on
st

ru
ct

io
n

er
ro

r
(d

B
)

Fig. 2. Reconstruction error versus number of iterations for different
sizes of resampling sets (M = 284, 303, 313, 350).

250 300 350 400
0

100

200

300

400

500

M : Size of the resampling set

N
um

be
r

of
it

er
at

io
ns

Fig. 3. Number of iterations necessary to reach εr < −320 dB,
versus the size of the resampling set. A number of iterations equal
to 500 signifies that the iterative algorithm does not converge for the
current resampling set

Fig. 2 and Fig. 3 show results of convergence. Fig 2 shows the recon-
struction error εr = 20 log ‖x[n] −W−1(Wx)[n]‖2 as a function
of the number of iterations, for different sizes of resampling sets.
Clearly, the reconstruction error is linearly decreasing on a dB scale
as the iterations increase. This confirms the geometric convergence
of the inverse sampling algorithm stated in Alg. 1.

As can be seen in Fig. 2, the size of the resampling set is critical
as regards of the number of iterations needed to reach a fixed re-
construction error bound. As an example, one needs 10 times more
iterations for a resampling set with size M = 284 than for a set with
a size M = 350. This is an expected result since it is well-known
that the repartition of the sampling set is related to the conditioning
of the non–uniform sampling problem, and so to the convergence
rate of the iterative reconstruction algorithm.

Fig 3 shows the number of iterations needed to reach the error
bound εr < −640 dB, as a function of the size of the resampling
set. In this example, a number of iterations equal 500 iterations sig-
nifies that the iterative algorithm does not converge for the current
resampling set. Below M = 280 the resampling set is not stable and
the iterative algorithm does not converge. Between M = 280 and
M = 318 the resampling set is critically stable and a small pertur-
bation of a stable set may give an unstable set. After M = 318, the
resampling set is stable and the number of iterations needed to reach
the fixed error bound is globally decreasing. This result speaks in
favour of large values for M for practical applications. However, the
size of the resampling set cannot be set as large as wanted for com-
putation burden reasons and a trade–off has to be found between
converging rate and computation cost.

5. CONCLUSION

We have established a new coherent framework to extend the class of
warping operators to the case of discrete–time sequences and defined
conditions under which such operators are invertible.

We have first considered the original discrete signal as a sam-
pling procedure in a shift–invariant space and shown that any discrete–
time warping operator can be written as a weighted resampling of the
original signal.

Before giving stability conditions on the resampling set, we have
shown that any discrete–time warping operator can be inverted by an
efficient iterative algorithm with geometric convergence.

Finally, we have illustrated performances of the method on nu-
merical examples and showed that the error of reconstruction of the
inverse discrete–time warping operator is of the order of the round–
off precision after few iterations.

We have already shown that time–warped spaces, can be used
for efficient non–stationary denoising purpose [4]. We think that
this new definition of the class of discrete–time warping operators
can be useful for multi–stages signal denoising algorithms and sepa-
ration of components with non–linear instantaneous frequency laws.
These are some of the issues we intend to consider in details in future
works.
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