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ABSTRACT

We present an application of the idea of preconditioning in
the context of Gabor frames. We propose a method to find an
approximation for the inversion of the Gabor frame operator,
based on (double) preconditioning. We thereby obtain very
good approximations of the true dual Gabor atom at very low
computational costs. Part of the efficiency of the proposed
scheme results from the fact that all the matrices involved
share a well-known block matrix structure. For Gabor atoms
typically used in applications, the combination of these two
preconditioners leads to very good results.

1. INTRODUCTION:

The Short-time Fourier transform (STFT), also called Gabor-
Transform in its sampled variant, is a well known, valuable
tool for displaying the energy distribution of a signal f over
the time-frequency plane. An important question is, how to
find a Gabor analysis-synthesis system with perfect (or satis-
factorily accurate) reconstruction in a numerical efficient way.
Basic Gabor theory [1] states that for Gabor frames, when
using the so called canonical dual Gabor atom g̃ = S−1g,
perfect reconstruction is always achieved. For calculation the
Neumann algorithm with relaxation parameter λ can be ap-
plied. If the inequality ‖Id − λS‖Op < 1 holds, this algo-
rithm converges and the algorithm approximates the dual Ga-
bor atom g̃.

For application a numerical efficient way to find this in-
verse is important. There are numerous iterative algorithms to
invert matrices. In this work these are combined with another
well known tool to speed up the convergence rate, namely,
preconditioning. This is used to further improve the numer-
ical efficiency of the calculation of the inverse Gabor frame
matrix. The aim of this article is to investigate the idea of
double preconditioning of the frame operator S. This scheme
relies on the very special structure of the Gabor frame oper-
ator S. For S let D = (di,j), with di,j = δi,jsi,j , where
δi,j denotes the Kronecker symbol. If S = (si,j) is strictly
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diagonal dominated, it is well known that S−1 can be ap-
proximated well using the preconditioning matrix P = D−1.
An analogue property holds if Ŝ, the Fourier transformation
of S [2], is strictly diagonal dominated, obtaining a circulant
matrix as preconditioning matrix. If using these two precon-
ditioning matrices at the same time, hence the name double
preconditioning, we will get a new method. For the calcula-
tion of the preconditioning matrix we use the block structure
of the Gabor frame matrix, as investigated in [3], which leads
to a very efficient algorithm.

This article is a short summary of results for this algo-
rithm. For more details refer to [4].

2. PRELIMINARIES AND NOTATIONS

2.1. Matrices

In this paper we work with complex vectors of length n x =
(x0, x1, . . . , xn−1), as well as with n×n matrices A = (ak,l),
symbolically denoted by A ∈ Mn,n. This set is equipped with
the usual operator norm ‖A‖Op. By A∗ we denote the adjoint
of the matrix A. The notion of Fourier transformation can be
easily extended to matrices [5] [2] by setting Â = Fn◦A◦F ∗

n ,
where Fn is the FFT-matrix, (Fn)k,l = 1√

n
· e−

2πikl

n .
Instead of solving a linear system of equations Ax = b

another one, PAx = Pb, is solved. If the matrix P is cho-
sen properly, this results in a low number of operations and
small memory requirements. It can also improve the numeric
stability of the system. This is called preconditioning[6].

2.2. Frames

A sequence of vectors (gk|k ∈ K) ⊆ H is called a frame
for the Hilbert space H, with inner product 〈., .〉, if constants
A,B > 0 exist, such that

A · ‖f‖
2
≤

∑
k∈K

|〈f, gk〉|
2
≤ B · ‖f‖

2
∀ f ∈ H (1)

The constants A and B are called lower frame bound and up-
per frame bound, respectively.
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For such a sequence the operator S : H → H defined
by S (f) =

∑
k

〈f, gk〉 · gk is called the frame operator. It is

self-adjoint, positive and invertible [7].
Let (g̃k) :=

(
S−1gk

)
. Then this is also a frame with

frame bounds B−1, A−1 > 0, the so-called canonical dual
frame. Moreover, every f ∈ H has expansions

f =
∑
k∈K

〈f, g̃k〉 gk and f =
∑
k∈K

〈f, gk〉 g̃k.

In the discrete, finite-dimensional case, H = C
n, a sequence

is a frame if and only if it spans H.
There is a number of algorithms for inverting the frame

operator. A well known algorithm is the Neumann algorithm.
With a special relaxation parameter λ = 2

A+B
, it becomes

the so-called frame algorithm [7]. Its calculation requires
the computation of the frame bounds, which are numerically
costly to compute. In order to deal with this drawback, for
example the conjugate gradient algorithm was proposed [7].
The algorithm proposed in this article avoids this drawback,
as well.

2.3. Gabor Analysis

Recall [8] that for any non-zero window function g and a sig-
nal f the STFT can be defined as Vg (f) (t, ω) = 〈f, MωTtg〉
using the translation operator Tτf (z) = f (z − τ) and the
modulation operator Mωf (t) = f (t) e2πiωt. In L2(Rd), the
space of square-integrable functions from R

d to C, we have

Vg (f) (t, ω) =

∫
Rd

f(x)g(x − t)e−2πiωxdx

Definition 1 For a non-zero function g (the window) and pa-
rameters α, β > 0, the set of time-frequency shifts of g

G(g, α, β) = {MβnTαkg : k, n ∈ Z
d}

is called a Gabor system. If it is a frame, it is called a Gabor
frame.

The dual frame of a Gabor frame is a Gabor system again,
which is generated by the dual window g̃ = S−1g and the
same parameters α and β.

2.3.1. Discrete Gabor Analysis

From now on all vectors in the Hilbert space C
n are consid-

ered to be periodic. The modulation and time shift operators
are discretized and periodized, i.e.,

Tlx = (xn−l, xn−l+1, . . . , x0, x1, . . . , xn−l−1)

and Mkx =
(
x0 · W

0
n , x1 · W

1·k
n , . . . , xn−1 · W

(n−1)k
n

)
with

Wn = e
2πi

n . We consider the Gabor system G(g, a, b) =

{
MblTakg : k = 0, . . . , ã − 1; l = 0, . . . , b̃ − 1

}
, where the

parameters a and b are factors of n, i.e. ã = n
a

and b̃ = n
b

are
integers.

In the discrete, finite-dimensional case, the Gabor frame
operator has a very special structure, the matrix S is zero ex-
cept in every b̃-th side-diagonals and these side-diagonals are
periodic with period a. This property can be directly seen by
using the Walnut representation [9] of the Gabor frame matrix
S = (sp,q):

Theorem 2

sp,q =

⎧⎨
⎩

b̃
ã−1∑
k=0

gp−ak · gq−ak for p − q ≡ 0 mod b̃

0 otherwise

This means S can be represented as a special block matrix,
both as a block circulant matrix and as matrix with diagonal
blocks [2], which we will call a Gabor-type matrix. So the
n × n matrix can be described uniquely by a b × a matrix
B = (bi,j) with bi,j = si·b̃+j,j . This is called the ‘non-zero’
block matrix [10]. With this smaller matrix matrix-vector
and matrix-matrix multiplication can be calculated very ef-
ficiently [3].

3. SINGLE PRECONDITIONING OF THE GABOR
FRAME OPERATOR

We propose to combine the two following preconditioning
methods.

3.1. Diagonal Matrices

As a preconditioning matrix the inverse of the diagonal part
of the frame operator is used. For every square matrix A let
D(A) = (di,j) be the matrix with entries

di,j =

{
ai,i i = j

0 otherwise
,

called the diagonal part of A.

P = D(S)−1

Fig. 1. The diagonal preconditioning matrix

The diagonal part of a Gabor-type matrix is clearly block-
circulant, and therefore also of Gabor-type. This allows us
to use the efficient block-matrix algorithms from [10]. If the
window g is compactly supported on an interval with length
smaller than b̃ then S is a diagonal matrix, see [5]. In this
case the inverse matrix is very easy to calculate, by just tak-
ing the reciprocal value of the diagonal entries, which are
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always non-zero for a Gabor frame matrix [3]. Even in the
case where the window g is not compactly supported, but S

is strictly diagonal dominant, then S−1 is well approximated
by D−1. It is known [11] that in this case the Jacobi algo-
rithm, xm = D−1 (D − S) xm−1 + D−1g, converges for
every starting vector x0 to S−1g. As can be seen from the
above formula the Jacobi algorithm is equivalent to precondi-
tioning with D(S)−1.

3.2. Circulant Matrices

Instead of diagonal matrices circulant matrices can be consid-
ered. For a square matrix S ∈ Mn,n let C(S) = (ci,j)i,j with

ci,j = 1
n

n−1∑
k=0

sk+(j−i),k.

P = C(S)−1

Fig. 2. The circulant preconditioning matrix

The two classes of matrices we have investigated so far
are connected as follows [2]:

Theorem 3 For a circulant matrix M the matrix M̂ is diag-
onal and vice versa.

Due to properties of the Matrix Fourier Transform [2] the
inverse of C(S) can be calculated by using

C(S)−1 = F ∗
n · [D (Fn · S · F ∗

n)]
−1

· Fn

Therefore the computation of C(S)−1 can be done in a very
efficient way by using the FFT-algorithm. Analogue to Sec-
tion 3.1 this can be used as preconditioning matrix.

4. DOUBLE PRECONDITIONING OF THE GABOR
FRAME OPERATOR

The main result of this work is the double-preconditioning
method. In a rather natural way, we will combine the two
single preconditioning methods introduced above as seen in
Figure 3.

P = C
(
D (S)

−1
· S

)−1

D(S)−1

Fig. 3. The double preconditioning matrix

For a basic description of the algorithm see figure 4. In
this figure the subscript ‘block’ indicates a calculation on the
block matrix level, which makes this algorithm very efficient
[3]. The expressions diagblock(M), circblock(M), invblock(M)
and block(g, a, b) stand for the calculation of the block matrix
of D(M), C(M), M−1 and S respectively. The matrix mul-
tiplication on block matrix level is signified by •block.

- Parameter: g, a,b

- Initialization: B = block(g, a, b)

- Preconditioning :

P1 = invblock (diagblock (B))

S1 = P1 •block B

P2 = invblock (circblock (S1))

S2 = P2 •block S1

Fig. 4. The double preconditioning algorithm

5. NUMERICAL RESULTS

We present two interesting examples, that show the efficiency
of this algorithm. For more numerical data refer to [4].

5.1. The shapes of the approximated duals

In this first example we will use the double preconditioning
matrix to get an approximate dual. For that the double pre-
conditioning matrix itself, P2 in Figure 4, is used as an ap-
proximation of the inverse Gabor frame operator.

In this experiment, Figure 5, we see

1. that the different single preconditioning steps can cap-
ture certain properties of the dual window but fail to do
so for others.

2. the double preconditioning lead to a good approxima-
tion of the dual.

This experiment was done with signals of length n = 144
using a Hamming window of length win = 24, a = 12 and
b = 9. We will use the names diagonal dual, circulant dual
and double dual for the window we get when we apply the
preconditioning matrices to the original window. The diag-
onal dual is not similar to the canonical dual near the center,
but approximates it well farther away, while the circulant dual
just has the opposite property. Opposed to these ‘single du-
als’ the ‘double dual’ seems to combine these properties to
become similar to the true dual everywhere.

5.2. Iteration

Instead of using the preconditioning matrix as approxima-
tion of the inverse, we can iterate this scheme using the Neu-
mann algorithm. This is demonstrated in an example with a
Gaussian window, n = 720, a = 24 and b = 20. See Figure
6. We look at the preconditioning steps, the frame algorithm
with optimal relaxation parameter and a conjugate gradient
method.
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Fig. 5. Windows: Comparison of original, canonical dual and the
approximation of the dual using the preconditioning methods.

In this figure we see that the circulant preconditioning step
is only a little bit better than the frame algorithm, iteration-
wise. As the time sampling is not very small, this was ex-
pected. Diagonal preconditioning is better. The double pre-
conditioning brings a big improvement compared to the single
preconditioning methods. It can also be seen that the conju-
gate gradient algorithm, a method with guaranteed conver-
gence [6], performs worse than double and diagonal precon-
ditioning. Generally our experiments have shown that for in-
creasing a the circulant preconditioning gets worse and for
increasing b the diagonal preconditioning gets worse. Double
preconditioning is not effected by these deterioration.

6. PERSPECTIVES

These algorithms can be very useful in situations, where the
calculation of the canonical dual window is very expensive .
For example in the situation of quilted Gabor frames [12] or
the Time-Frequency Jigsaw Puzzle [13], globally a frame ex-
ists, but it is not a Gabor frame. Therefore there is no dual
Gabor window globally, but the dual frame can be approx-
imated by the dual windows of the local Gabor frames. In
these cases it might be preferable to use a good and fast ap-
proximation of the local Gabor dual windows instead of using
a precise calculation of the local canonical dual, as precision
will be lost at the approximation of the global dual frame.
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Fig. 6. Convergence with iteration: Relative difference of iteration
steps (Gaussian window, n = 720, a = 24, b = 20.)
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