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ABSTRACT

This paper presents an algorithm for estimating the 

parameters of multicomponent chirp signals. The estimator 

is based on the cubic phase function (CPF), which is 

efficient to estimate the parameters of monocomponent 

polynomial phase signals (PPS) with order is less than or 

equal to 3. When the CPF is dealing with multicomponent 

chirp signals, the spurious peaks arise and thus the 

identifiability problem occurs. A new approach based on the 

transformation called product cubic phase function (PCPF) 

is proposed to remove this problem. This estimator offers a 

number of advantages with respect to CPF including 

improved noise rejection, suppression of cross terms, and 

elimination of spurious peaks. The algorithm is verified by 

simulation results.  

1. INTRODUCTION 

Linear frequency modulated (LFM) signals or chirp signals 

are often found in signal processing and communication 

applications such as radar, sonar, biomedicine, seismic 

analysis, and mobile communications.  

Parameter estimation of chirp signal embedded in 

Gaussian noise has received considerable attention [3-9, 12] 

for several decades. The time frequency distributions 

(TFDs), such as the Wigner-Ville distribution (WVD) and 

its related bilinear class [1-2], are efficient to reveal the 

instantaneous frequency (IF) over the time-frequency plane 

and then estimate the parameters using the estimated IF. As 

to parametric estimation, the maximum likelihood 

estimation (MLE) [4] plays an important role. The discrete 

form of the MLE, which is also known as discrete chirps 

Fourier transform (DCFT), is presented in [5]. To avoid the 

two-dimensional (2-D) maximization of MLE, Djuric and 

Kay proposed the use of phase unwrapping and linear 

regression [3]. It suffers from the ability to analyze the 

multicomponent signals. The suboptimal techniques 

including the polynomial phase transform (PPT) [6-7] with 

order is 2, the Radon-Ambiguity transform (RAT) [8] and 

the fractional autocorrelation [9], transform the signal into 

one-dimensional (1-D) parameter space in which only the 

chirp rate is interested. These techniques have the 

advantages that they are computationally efficient and can 

be used for multicomponent signals. Moreover, the 

fractional Fourier transform (FrFT) [10] also has received 

considerable attention for its improved noise rejection and 

ability to resolve closely-spaced chirp signals. 

In this paper, we consider the recently proposed 

transform, called the cubic phase function (CPF) [11] which 

estimates the instantaneous frequency rate (IFR) first and 

then used the IFR as initial step to estimate other parameters. 

In order to improve its performance in the presence of noise 

and multicomponent signals, a transform called product 

CPF (PCPF), which exploits the different dependences of 

the auto terms and the cross terms at the time positions, is 

proposed next. This is motivated by the similar idea of the 

product higher-order ambiguity function (PHAF) [12] 

which discerns the auto terms and the cross terms by 

utilizing the different dependences on lag. 

This paper is organized as follows. In section 2, the 

problem formulation and the conditions for the spurious 

peaks are discussed. The PCPF which is supposed to 

eliminate the spurious peaks along with other benefits is 

developed in section 3. Section 4 provides the simulation 

results which validate the proposed estimator. Some 

discussions and further study are listed in Section 5. Section 

6 concludes this paper. 

2. PROBLEM FORMULATION  

In [11], the CPF was defined as a 2-D bilinear transform of 

the signal ( )x n as

2j

0
( , ) ( ) ( )CPF n x n x n e d , (1)

where  represents the IFR given by  

2IFR( ) ( ) /n d n dn2 (2)

where ( )n is the phase of the signal. For the single chirp as
2

0 1 2j( )
( ) ,

a a n a ns n Ae n (3)
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where [ ( 1) / 2 : ( 1) / 2]N N ,  is odd, the CPF is 

derived by directly substituting (3) into (1),

N

2
2

2

2 2

2

2 2

j(2 - )2

0

( ) / 8(2 - ) (1 ),

( ) / 8(2 - ) (1 ),

( , )

( )
a

A n a j a

A n a j a

CPF n

A n e d (4)

where . It is easy to see that, 

when 2 , the CPF achieves the maximums along the 

IFR of chirp signal. The IFR-based algorithm in [11] selects 

two different time positions to form the equations to 

estimate the phase parameters. It has been verified both in 

theory and in simulations that the CPF is highly efficient to 

analyze the monocomponent signal even at low signal-to-

noise ratio (SNR). However, when the CPF is applied to 

multicomponent signals, the identifiability problem occurs. 

The analysis of this issue is provided below. 

2
0 1 2( ) exp( 2( ))n j a a n a n

2a

Consider two chirp components: 
2

1,0 1,1 1,2 2,0 2,1 2,2j( ) j( )

1 2( )
a a n a n a a n a nx n A e A e

2

. (5)

Substituting (5) into (1) yields: 

2 2
1,0 1,1 1,2 1,2

2 2
2,0 2,1 2,2 2,2

2
1,2 2,2 1,1 2,1 1,2 2,2

2
1,2 2,2 2,1 1,1

j2( ) j(2 )2

1 0

j2( ) j(2 )2

2 0

j( ) j{( ) 2( ) }

1 2 0

j( ) j{( )

1 2

( , )

( )

( )

a a n a n a

a a n a n a

a a a a a a n

a a a a

CPF n

A e e d

A e e d

A A z n e e d

A A z n e e 2,2 1,22( ) }

0

a a n d

(6)

where . From the above 

equation, the CPF presents peaks at which

correspond to the first two terms on the right of equation (6), 

whereas the cross terms which correspond to the last two 

terms disperse along the IFR domain. Note that, if  

2
1,0 2,0 1,1 2,1 1,2 2,2j{( ) ( ) ( ) }

( )
a a a a n a a nz n e

1,22a

2,1 1,1 2,2 1,2( ) 2( ) ca a a a n 0

2

,                  (7)

the result of (6) at  iscn n

2 2
1,0 1,1 1,2 1,2

2
2,0 2,1 2,2 2,2

2
1,2 2,2

j2( ) j(2 )2

1 0

j2( ) j(2 )2

2 0

j( )

1 2 0

( , )

2 ( )

c c

c c

c

a a n a n a

a a n a n a

a a
c

CPF n

A e e d

A e e d

A A z n e d

. (8)

The last two terms in (6) merge into one term in (8) which 

presents a spurious peak at .1,2 2,2a a
The above result can be generalized to multicomponent 

case with 2K , where K  is the number of the 

components. 

(1) The number of cross terms is ;2K K
(2) The cross terms merge into  spurious 

peaks at the time positions that satisfy the equation as 

2( )K K / 2

K

,1 ,1 ,2 ,2( ) 2( ) 0, , } 1,...,k m k ma a a a n k m K .   (9) 

Hence, the algorithm in [11] is not suitable to estimate 

the multicomponent chirp signals due to the existence of the 

spurious peaks. In addition, there is no principle which 

appropriately selects the time positions that don’t present 

spurious peaks. 

3. PRODUCT CUBIC PHASE FUNCTION 

The above section establishes the existence of cross terms 

and the spurious peaks. We also find that the cross terms 

disperse across the IFR domain and merge spurious peaks 

when (9) is satisfied, whereas auto terms concentrated on a 

straight line that located at , . It can be 

said that the auto terms are independent of time while the 

cross terms occur along a linear function of the time 

position. Hence, it provides the basis for discerning the auto 

terms from cross terms, even if the cross terms give rise to 

spurious peaks. In this paper, we define the product CPF 

(PCPF) as the product of the CPFs at different time 

positions.

,22 ka 1,...,k

3.1. Definition

Given the set of L  different time positions l , the 

( , )CPF l  corresponding to the set of time is computed by 

(2) and then the PCPF as the product of the CPFs at 

different time positions is defined as  

1( ) ( , )N
lPCPF CPF l . (10)

From (10), multiplication of the auto terms in each CPF 

results in highly distinct peak locates at . The 

PCPF provides a number of advantages:  
,22 ka

(1) The multiply operation enhances the auto terms 

due to the fact that auto terms align and weakens cross 

terms since they disperse in the  domain;  

(2) The spurious peaks are suppressed or eliminated 

due to the multiplication of misaligned spurious peaks; 

(3) The noise rejection is also improved with respect to 

CPF.

Obviously, the more sets of time positions used, the 

better the cross terms suppression capability, but the higher 

the computational load. 

3.2  Estimation Algorithm 

In this section, the algorithms for estimating parameters of 

single and multicomponent chirp signals in additive white 

Gaussian noise are provided. We make the assumption that 

the amplitudes of the components are equal or slightly 

different. For unbalanced signals, the extension can be 

similarly performed based on the algorithm in [13]. 

1) Monocomponent chirp signal: Although the PCPF 

is supposed to suppress the cross terms and spurious peaks 

of multicomponent signals, the PCPF is also found to 
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effectively improve the rejection of the additive Gaussian 

noise. The estimation procedure is as follows. 

(1) Estimate the second-order phase coefficient by 

searching the peak of the PCPF;

(2) Remove the second-order phase contribution by 

using the demodulation as 2
2( ) ( ) exp( j2 )x n x n a n ;

(3) Estimate the first-order phase coefficient using the 

FFT method or any other subspace method;

(4) Estimate the phase  and the amplitude 0a A  by 

evaluating

2
1 2-j( )( 1) / 2

( 1) / 20 angle ( )
a n a nN

n Na x n e , (11)

2
1 2-j( )( 1) / 2

( 1) / 2 ( ) /
a n a nN

n NA x n e N . (12)

2) Multicomponent chirp signals: The algorithm for 

estimating the multicomponent chirp signals combines the 

algorithm for estimating the single component signal and 

the peeling technique [7].  

The PCPF may exhibit more than one peak in its 

spectrum. In this case, we pick the strongest peak and 

estimate the phase parameter of this component. Then the 

estimating procedure for single component is implemented 

to estimate other phase parameters and amplitude of this 

component. We follow the peeling approach and remove the 

estimated component from observation data. This completes 

one recursion of the proposed algorithm. A new recursion is 

initiated whenever a component is removed from the data. 

The recursion runs until the spectrum of PCPF does not 

exhibit strong peaks. 

3.3 Computational Cost and Time Position Selection 

In general, the PCPF requires about L times more 

computations than the CPF. However, the computation of 

CPF can be reduced to the order of 2  with the use 

of subband decomposition techniques [11], which is equal 

to the computation of an N-points fast Fourier transform 

(FFT). Moreover, 

logN N

L  is always a small number, which 

means the additional cost is not excessive.  

Theoretically speaking, there is no limitation on the 

selection of time positions when the PCPF is applied to 

multicomponent chirp signals. However, in order to produce 

better performance, two limitations are preferred: 

1) Select the time positions at the middle of the 

observation time, since the CPFs at time positions close to 

the beginning and end of observe time are always not 

distinct. This phenomenon can be also found in WVD and 

ambiguity function (AF).  

2) Adequately space any two time positions in PCPF to 

sufficiently misalign the cross terms and spurious peaks 

4. NUMERICAL ANALYSIS 

In this section, we demonstrate the performance of the 

proposed algorithm by estimating the mean-square error 

(MSE) through 100 times Monte-Carlo runs in each SNR. 

Since the estimation algorithm is iterative, it inevitably 

suffers from error propagation effect. Therefore, the SNR 

threshold is essentially determined by the threshold related 

to the correct estimate of second-order parameter. Due to 

this reason, the performance is demonstrated by the variance 

of the second-order coefficient. 

Example 1 The noiseless signal is generated by (3) and 

the parameters are chosen to be 1A , 0 1a , 1 / 5a ,

 and 2 / 5a N 515N , and the sampling rate is 1. The

SNR varies from -10dB to 5dB in steps of 1dB. The MSEs 

of corresponding to different sets of time are evaluated 

and presented in Fig. 1. The time sets of L=6 are [-100, -50, 

0, 50, 100, 150], whereas the time positions of L=1 and 

2â

3L  are 0 and [-50, 0, 50], respectively. 

The effect of increasing the sets of time is the decrease 

of the SNR threshold. For L=6, the SNR threshold is about -

6dB, which is 3dB decrease of SNR threshold with respect 

to CPF (L=1). Compared with other chirp rate estimator, the 

proposed estimator has better performance at low SNRs, i.e., 

below 0dB and above -6dB.  

     Fig.1.    MSE of  of monocomponent signal versus SNR 2â

Example 2 In this example, we present the 

performance of the estimator when multicomponent signals 

are encountered. Two chirp signals are generated. One is the 

same with the signal in Example 1 and the other is 

generated by (3) and the parameters are chosen to be 

1A , 2,0 1a , , . For L=3, 6, 

the selected time positions are the same with Example 1. For

L=1, the selected time positions is from (7).  From 

this plot, we can observe that the CPF can not estimate the 

parameter as the SNR increases due to existence of the 

spurious peaks. However, the PCPF (L=3, 6) removes the 

identifiability problem and gives small variance at low SNR.  

2,1 2 / 5a 2,2 2 / 5a N

86cn
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Fig.2.   MSE of  of multicomponent signals versus SNR 2â

5. DISCUSSION 

The spurious peaks occur at the time positions subject to a 

equation like (9) when higher-order chirps are processed by 

CPF. The PCPF, however, is not able to solve the arising 

spurious peaks by direct implementation, since both of auto 

terms and cross terms occur along a function of the time. In 

particular, the IFR of a cubic chirp, ,

is 2 3 , so we need to remove the influence of 

2  to discern the auto and cross terms. An approach to 

eliminate coefficient 2a  is to estimate the IFR in the time 

. Then the PCPF along with IFR scaling as the 

counterpart of frequency scaling in PHAF follows to 

suppress the cross terms and spurious peaks. This method is 

developing.

2 3
0 1 2 3j( )

( )
a a n a n a ns n Ae

2 6a a n
a

0n

6. CONCLUSION 

In this paper, the spurious peaks are first described when the 

CPF deals with multicomponent chirp signals. An improved 

method based on CPF is proposed for removing the 

identifiability problem. This method is to multiply the CPF 

at different time positions by exploiting different time 

dependence of auto terms and cross terms. The PCPF is also 

effective to improve the rejection of noise and cross terms 

with respect to CPF. The performance of this method has 

been evaluated using Monte-Carlo experiments. The results 

show that the PCPF has better performances than the CPF in 

the case of both monocomponent and multicomponent 

signals. The computation cost and time position selection 

are also discussed.
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