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ABSTRACT

The paper examines the impact of the additive correlated
noise on the accuracy of a signal reconstruction algorithm
originating from the Whittaker-Shannon sampling interpo-
lation formula. The proposed reconstruction method is a
smooth post-filtering correction of the classical Whittaker-
Shannon interpolation series. We assess the global accuracy
of the proposed reconstruction algorithm for long memory
stationary errors being independent on the sampling rate.
We also examine a class of long memory noise processes
for which the correlation function depends on the sampling
rate. Exact rates at which the reconstruction error tends
to zero are evaluated. We apply our theory to the prob-
lem of designing non-parametric lack-of-fit tests for veri-
fying a parametric assumption on a signal. The theory of
the asymptotic behavior of quadratic forms of stationary se-
quences is utilized in this case.

1. INTRODUCTION

The Whittaker-Shannon (WS) interpolation series plays a
fundamental role in representing signals/images in the dis-
crete domain. In fact, it is commonly recognized as a mile-
stone in signal processing, communication systems, as well
as Fourier analysis [1] . The WS reconstruction theorem
says that if an analog signal f(t) is band-limited with the
bandwidth Ω (this in the sequel we shall denote as f ∈
BL(Ω)) then it can be perfectly reconstructed from its dis-
crete values {f(kτ)} by

f(t) =
∞∑

k=−∞
f(kτ) sinc(πτ−1(t − kτ)), (1)

provided that τ ≤ π/Ω, where sinc(t) = sin(t)/t. The WS
interpolation series has been extended to a number of cir-
cumstances including multiple dimensions, random signals,
not necessarily band-limited signals, sampling in general-
ized spaces, and reconstruction from irregularly sampled

data [1] . In practice one rarely has access to perfect sam-
ples {f(kτ)} but rather to their noisy version {yk} due to
measurement and transmission errors. This important is-
sue has been mentioned often in the signal processing lit-
erature but no rigorous algorithms with established conver-
gence properties for a signal reconstruction from sampled
and noisy data were given. A naive approach would use the
reconstruction method based on (1) with {f(kτ)} replaced
by the samples {yk}. This approach cannot work since it
is dangerous to interpolate the noisy data. The first thor-
ough treatment of this problem was given in [2], see also
[3] for an overview of this problem. In all these contribu-
tions the white noise case has been mostly examined. In [4],
however, the extension of the previous theory to short mem-
ory noise processes was made. The problem addressed in
this paper is to provide the further generalization to the case
of long-range dependent noise processes. There are many
physical and man-made phenomena that exhibit strong long-
term correlations [5], [6]. In many applications we are faced
with the aggregation effect of random environments yield-
ing a noise process which is not only correlated but also
exhibits long-range dependence [5], [6]. Particularly, this
takes place in wireless networks where the multipath ran-
dom environment yields fading effect resulting in dependent
noise with long memory effects. In this paper we consider
the following statistical model. We observe 2n + 1 noisy
data points

yk = f(kτ) + εk, |k| ≤ n, (2)

and we wish to design a consistent reconstruction scheme
resembling (1). Here {εk} is the zero mean finite variance
stationary stochastic process. The following model on the
correlation structure of {εk} is employed in this paper.

Assumption 1 Let {εk} be a weakly stationary stochastic
process with Eεk = 0, var(εt) = σ2, and cov(εk+�, ε�) =
r(|k|), such t hat

r(k) = L(|k|)|k|−α, 0 < α ≤ 1, |k| �= 0, (3)
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where L(•) is a slowly varying function at ∞. The pro-
cesses satisfying (3) is said to have long-range dependence
(LDR) since

∑∞
k=1 |r(k)| = ∞. On the contrary a pro-

cess for which
∑∞

k=1 |r(k)| < ∞ exhibits short-range de-
pendence (SRD). It is worth noting that two popular LRD
processes, namely fractional Gaussian noise and FARIMA
processes meet Assumption 1.
The noise process satisfying Assumption 1 is independent
on the sampling rate of the transmitted signal, i.e., the cor-
relation function r(k) of {εk} is independent on τ . On the
other hand the model in (2) can be viewed as the sampling
process of the analog signal f(t) submerged in a continu-
ous time colored process X(t) such that εk = X(kτ). In
this case the correlation function r(k) of {εk} must depend
on τ in such a way that {εk} gets more dependent with
higher oversampling, i.e., when τ gets smaller. This situ-
ation may appear during the actual sampling process of a
signal imbedded in a continuous stationary stochastic pro-
cess. This motivates the following model of dependence of
r(k) on τ .

Assumption 2 Let {εk} be a weakly stationary stochastic
process with Eεk = 0 and E{εkεk+j} = r(ρjτ). Let
moreover ρ depend on τ in such a way that

τρτ → θ as τ → 0, (4)

where 0 ≤ θ ≤ ∞.

The factor ρτ in (4) is a measure of the strength of the de-
pendence of the noise process. In fact, if ρτ increases fast
enough to infinity, e.g., ρτ � dτ−β , β > 1, as τ → 0 then
the noise process is almost independent. On the contrary if
ρτ � dτ−β , 0 < β < 1, as τ → 0 then τρτ → 0 and
it can be easily shown that the process exhibits long range
dependence. Indeed, we can show that

∑
|j|≤n

E{εkεk+j} � r(0) +
2

τρτ

∫ nτρτ

0

r(t)dt , (5)

provided that
∫ ∞
0

|r(t)|dt exists. Thus the sum of the co-
variances of {εk} may be unbounded if τρτ → 0, i.e., we
obtain the LRD noise process. It is also worth noting that if
ρτ � dτ−1 then we have E{εkεk+j} = r(dj) and thus we
obtain the first noise model described in Assumption 1. On
the contrary if ρτ = d then E{εkεk+j} = r(djτ) and no
consistency can be expected in this case.
In this paper we assess the accuracy of the signal recon-
struction method for the both aforementioned noise models.
Note that in [4] algorithms for signal recovery from sam-
ples observed in the presence of the linear SRD noise were
only studied. Here we examine the statistical implications
of the LRD assumption on the sampling and signal recovery
problem. Then we apply our theory to the problem of de-
signing consistent tests for verifying a hypothesis whether

the signal f in model (2) belongs to some pre-specified fi-
nite dimensional subspace of the signal space. It is also
worth mentioning that all presented results are obtained for
the post-filtering reconstruction algorithm but they can be
easily extended to other reconstruction methods examined
in [2, 3, 4]. The prime goal of this work, however, is to
evaluate the impact of various types of dependent errors on
the choice of the sampling rate and on the accuracy of the re-
construction method. These results seem to be universal in
the sense that other possible reconstruction algorithms will
exhibit similar if not the identical behavior. In fact we show
that in many special cases our rates agree with known op-
timal rates obtained in the signal processing and statistical
literature.

2. RECONSTRUCTION ALGORITHMS FROM
NOISY DATA

A naive reconstruction algorithm would use (1) with {f(kτ)}
replaced by {yk} yielding fn(t) =

∑
|k|≤n yk sinc(πτ−1(t−

kτ)). It is easy to verify that in this case the global recon-
struction error

MISE(fn) = E

∫ ∞

−∞
(fn(t) − f(t))2dt (6)

converges to infinity as n → ∞ for any τ ≤ π/Ω. This
deficiency of fn(t) calls for a certain smooth correction of
fn(t). This can be achieved, see [3, 4] for other alterna-
tives, by filtering out in fn(t) all frequencies greater than
Ω. Hence knowing only that Ω ≤ W and applying an ideal
low-pass filter with bandwidth W we obtain our basic re-
construction formula f̂n(t) = fn(t) ∗ sin(Wt)/πt which
can be written in an explicit form as follows.

f̂n(t) = τ
∑
|k|≤n

ykϕ(t − kτ), (7)

where ϕ(t) = sin(Wt)/πt is the reproducing kernel for
BL(Ω).

In the next section we give conditions under which the
MISE(f̂n) converge to zero as n → ∞ with a certain speed.
It clear that the dependence influences only the stochastic
part of the error, i.e., its integrated variance IVAR(f̂n) =∫ ∞
−∞ E(f̂n(t) − Ef̂n(t))2dt. On the other hand, the bias

term IBIAS2(f̂n) =
∫ ∞
−∞(Efn(t) − f(t))2dt can be eval-

uated in the similar way as in [4]. For the latter we require
an assumption on the decay of f(t) at ±∞, i.e., we need.

Assumption 3 Let f ∈ BL(Ω) and let for s ≥ 0 we have

|f(t)| ≤ c1|t|−(s+1), |t| > 0.

The issue of sampling representations analogous to (1) for
non-band-limited signals is much more delicate. General-
ized sampling theorems exist for some specific subspaces
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of L2(R), [1]. The results of this paper can be generalized
to non-band limited signals by using the reproducing kernel
ϕ(t) with increasing W , such that W = Wn → ∞ with
a certain rate. In this case our algorithm requires not only
optimal choice of the sampling period τ but also the band-
width W . This issue is left for further studies.

3. ACCURACY ANALYSIS

Let us consider the global properties of f̂n(t) for the both
noise models introduced in Section 1. Let us start with the
following universal expression for IVAR(f̂n) .

IVAR(f̂n) =
W

π
σ2

ε(2n + 1)τ2

+
2W

π
(2n + 1)τ2

2n∑
j=1

(
1 − j

2n + 1

)
r(j) sinc(jτW ).

This explicit formula is essential for the sake of bounding
IVAR(f̂n) for various dependent noise processes. At first
we consider the noise model when the covariance function
is independent of τ , i.e., the noise model characterized by
Assumption 1. The following lemma gives the asymptotic
behavior of the IVAR(f̂n) for the long memory noise pro-
cesses of this kind.

Lemma 1 Let Assumption 1 be met. Then for τ → 0 and
n τ → ∞ we have

IVAR(f̂n) = (1 + o(1))c(α)(2n + 1)Wα τ1+α L(1/τ)

where c(α) = (sin((α + 1)π/2)Γ(α + 1))−1.

Combining Lemma 1 with the results obtained in [3, 4] con-
cerning IBIAS2(f̂n) we can derive the following rate for
MISE(f̂n) .

Theorem 1 Let a be positive constant and assume that the
noise process obeys Assumption 1 with 0 < α < 1.

Let f satisfy Assumption 3. Then selecting

τ∗ = an− 2s+1
2s+1+α

we obtain

MISE(f̂n) = O
(
n− 2sα

2s+1+α

)
.

It is worth noting that the sampling period is smaller for the
LRD data than the SRD ones.
Let us now the noise model satisfying Assumption 2. As
we have noticed in the discussion below Assumption 2 the
case ρτ τ → 0 as τ → 0 yields the LRD errors. Let us first
examine the variance part of the reconstruction error.

Lemma 2 Under Assumption 2 with r(•) ∈ L(0,∞) and
ρτ τ → 0 as τ → 0 and n τ → ∞ we have

IVAR(f̂n) =
(
1 + o(1)

)2W

π
(2n + 1)

τ

ρτ

∫ ∞

0

r(v) dv .

Combining the above lemma with the results obtained in
[3, 4] we can derive the following rate for the τ dependent
noise process.

Theorem 2 Let a, d be positive constants and assume that
the noise process obeys Assumption 2 with r(•) ∈ L(0,∞)
and ρτ = dτ−β with 0 < β < 1 .

Let f satisfy Assumption 3. Then selecting

τ∗ = an− 2s+1
2s+1+β

we obtain

MISE(f̂n) = O
(
n− 2sβ

2s+1+β

)
.

It is worth noting that the rates in Theorem 2 can be arbi-
trary slow if β is approaching 0. In the extreme case when
β = 0 there is no rate. This corresponds to the strong depen-
dence of the correlation function on the sampling rate, i.e.,
when E{εkεk+l} = r(lτ) with r(•) ∈ L(0,∞). It remains
an open problem how to tackle this type of noise process.
It is also expected that the rate obtained in Theorem 2 is
slower than that in Theorem 1. In fact in order to compare
these rates let us choose, e.g., α = 1/2, s = 1. Some alge-
bra shows that we have the rate MISE(f̂n) = O(n−2/7) in
Theorem 1 and the rate MISE(f̂n) = O(n−1/4) in Theorem
2. Clearly the latter rate is slower than the former one.

4. LACK-OF-FIT TESTS

The results obtained in the previous section form the basis
for designing a non-parametric lack-of-fit test. Hence we
wish to test the null hypothesis H0 : f = f0, where f0 is
a fixed band-limited signal satisfying Assumption 3, using
a statistic based on the estimate f̂n(t). We shall examine
a test statistic which is the L2 distance between f̂n and f0,
i.e.,

Dn =
∫ ∞

−∞

(
f̂n(t) − f0(t)

)2

dt.

To design the formal test based on Dn we need to find the
limiting distribution of the test statistic. The problem of
constructing consistent non-parametric lack-of-fit tests for
the functional form of a signal has ben rarely addressed in
the signal processsing literature and the first attempt was
made in [7] where the noise process {εk} is assumed to be
of the iid type.

We extend these results to the case of correlated errors.
Nevertheless, we consider the linear noise process εk =
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∑∞
j=0 λjZk−j , where {Zj} is a sequence of i.i.d. random

variables with EZj = 0, var Zj < ∞ and E(Z4
1 ) < ∞.

This is due to the fact that our technical developments relay
heavily on the present known theory of central limit theo-
rems for quadratic forms of dependent processes [8] . Let
φ(ω) = σ2

Z(2π)−1
∣∣λ̂(ω)

∣∣2 be the power spectral density of

{εk}, where λ̂(ω) be the Fourier transform of {λk}. The
main assumption in our derivation of the central limit the-
orem is the asymptotic behavior of φ(ω) at ω = 0. Thus
we require that φ(ω) is continuous at 0 or that for some
0 < α < 1/2

φ(ω) � ω−αL∗(1/ω) as ω → 0+ , (8)

where L∗(•) is a slowly varying function at infinity. Then
it can be shown that under condition (8) and when the null
hypothesis is true we have

(Dn − EIn)/vn
d−→ N(0, 1) . (9)

where N(0, 1) is the standard normal random variable, EIn =
IVAR(f̂n) and

v2
n =

⎧⎪⎪⎨
⎪⎪⎩

16 π Ω n τ3 φ2(0)(1 + o(1))
if φ(ω) is continuous at 0,

16 πΩ1−2α

1−2α nτ3−2αL∗2(1/(Ωτ))(1 + o(1))
if φ(ω) meets (8) with 0 < α < 1/2.

(10)

On the other hand if the alternative hypothesis holds, i.e.,
that f0 is not a true signal then we have that (Dn−EIn)/vn

tends to infinity.
All the aforementioned considerations yield the practical
way of testing the hypothesis H0 : f = f0. Indeed for
the selected confidence level 0 < δ < 1 we reject H0 if

Dn − EIn

vn
> F−1

N (1 − δ) , (11)

where F−1
N (1− δ) is the upper 1− δ quantile of the FN (•).

If the inequality in (11) is not valid we accept the hypothesis
H0. There are a number of computational issues related to
the proposed test and this will be examined elsewhere.

5. CONCLUDING REMARKS

In this paper a thorough analysis of the post-filtering sig-
nal reconstruction method calculated from sampled data ob-
served in the presence long-memory errors was given. The
obtained result reveals that the rate of convergence can be
arbitrary slow. To alleviate this problem one can apply higher
oversampling rate. Yet another promising alternative would
be to use random sampling, i.e., replace the sampling points
{jτ, |j| ≤ n} by random points {π(j)τ, |j| ≤ n}, where
π is a randomly chosen permutation from a class of all per-
muations of the set {−n, . . . , n}. Then the estimate f̂n(t)

would take the following form f̃n(t) =
∑

|k|≤n ykϕ(t −
π(k)τ), where yk’s are the observations taken at the non-
random point {kτ}. We conjecture that recovering meth-
ods based on random sampling can have an improved rate
of convergence in the case of long-range dependent errors.
In fact the rate O(n− 2sα

2s+1+α ) obtained in Theorem 1 is ex-
pected to be replaced by a faster rate O(max(n−α, n− s

s+1 )).
The problem of establishing exact rates of signal recovery
methods utilizing random sampling is left for future research.
We also refer to [9] for some discussion of this issue in the
context of the classical non-parametric regression estima-
tion problem.
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