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ABSTRACT

We propose a novel method for reconstructing d dimensio-
nal signals with irregular samples, without any restriction on
their positions. We develop a multi-resolution approximation
scheme using Compactly Supported Radial Basis Functions
(CSRBFs). Samples are first clustered using principal compo-
nent analysis and their centroids define CSRBF centers. The
mean square error is minimized by selecting centers where the
largest local error at the previous level is. We shall prove the
effectiveness of our algorithm in one-and two-dimensional
cases with Gaussian noise.

1. INTRODUCTION

In many applications, signals can only be sampled at non-
uniformly spaced points; for example, due to data loss in com-
munication channels, in image contour analysis, or in data
acquisition process, such as surface scanning. For these rea-
sons, the problem of continuous signal reconstruction from
irregular samples has received considerable attention. Most
previous works make some restrictions on the distribution of
points, such as the maximum gap between samples, or ratios
between separation distance and fill distance (see definition
in Section 2). However, for many applications we can not
consider such restrictions.

When there is no restriction on the distribution of samples,
the problem is ill-posed. The most common way to solve this
problem is to consider a variational approach (see Section 2)
where general solutions are Radial Basis Functions (RBFs).
Unfortunately,most known RBFs are globally supported, thus
the corresponding matrix in the linear system to be solved is
dense. In such a case, due to the complexity to solve the linear
system, we can only consider a low amount of samples.

Arigovindan et al.[1] consider only a thin plate smooth-
ness energy term, and discretize the solution with non-uniform
B-splines. CSRBFs have been introduced[2] to reduce the
complexity, in the general variational case. The correspond-
ing matrix in the linear system becomes sparse. However, in
the case of highly irregular samples, higher supports are re-
quired, and denser the matrix is. Multi-resolution methods

[3, 4] have been introduced to overcome this problem. These
schemes require the construction of a center hierarchy and
the computation of coefficients. Previous authors use a deci-
mation of samples to define the center hierarchy, and directly
interpolate the corresponding sample [3]. The performance of
such methods highly depends on the quality of this hierarchy.

In this paper, we will propose a clustering based hierar-
chy, rather than tuning the decimation process. Our clustering
method of samples is based on a principal component analy-
sis, where a cluster’s centroid will be used as CSRBF centers.
Due to the noise in the data, we will consider the approxi-
mation problem instead of interpolation. In our method, we
focus on adding centers only where it is required; i.e., where
the local error is the largest.

The paper is organized as follows: mathematical prelimi-
naries on variational approach and single scale reconstruction
with RBFs are presented in Section 2. In Section 3, we will
present a unified multi-resolution formulation, our clustering
method and our algorithm. Experiments with 1D and 2D sig-
nals prove the effectiveness of our proposal in Section 4 after
which a conclusion follows.

2. SINGLE RESOLUTION RECONSTRUCTION
WITH RADIAL BASIS FUNCTIONS

Given N irregular samples {si}i=0,...,N−1 at locationsP {pi :
pi ∈ Ω ⊂ R

d}, the approximation problem where f(pi) ≈
si, opposed to the interpolation problem is to construct a con-
tinuous function f(x), such that f(pi) = si. Since these
problems are clearly ill-posed, some a priori knowledge about
the function to be reconstructed is required.

The solution of these ill-posed problem can be obtained,
from the regularization theory, by variational principle con-
taining data closeness and smoothness information. Solving
the reconstruction problem (approximation, or interpolation)
consists on finding the function f which minimizes the fol-
lowing general functional:

H [f ] =

N−1∑
i=0

(f(pi) − si)
2
+ λ (R[f ]− r0) (1)
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, where λ is a Lagrange Multiplier, and r0 is related to the
wanted smoothness.

We will say that a function is smoother than another one,
if it has less energy in high frequencies domain. The high
frequency content of a function can be measured by first high-
pass filtering the function, then measuring the power. This
suggests the use of the following smoothness term :

R[f ] =

∫
Rd

|f̂(ω)|2

φ̂(ω)
dω

, where ˆ indicates Fourier transform in d dimension, φ̂ is
some positive function that tends to 0, when ‖ω‖ → ∞. If we
consider that there is no privileged direction, the smoothness
term becomes rotationally invariant, and it can be shown [5]
that the function which minimizes the functional (1) has the
form:

f(p) =

N−1∑
i=0

αi φ (‖p− pi‖) +

Q−1∑
k=0

πk gk(p) (2)

, where φ is a radial basis functions, {gk}k=0,...,Q−1 is a ba-
sis in the m-dimensional null space containing all real-valued
polynomials in d variables and of order at most m, Q =(

m − 1 + d
d

)
, and we require N ≥ Q; the coefficients

α = {αi}i=0,...,N−1 and π = {πk}k=0,...,Q−1 satisfy the
following linear system:

[
Aφ,p + λ I Gt

G 0

]
·

[
α

π

]
=

[
s

0

]
(3)

, where Aφ,p(i, j) = φ(‖pi −pj‖) and G(k, i) = gk(pi). To
solve this problem, the only required assumption is that the
Aφ,p matrix should be conditionally positive definite. How-
ever if Aφ,p is positive definite no polynomial forms are re-
quired.

Eq. (2) is generally referred to Radial Basis Functions
(RBFs), pi are traditionally called centers, since basis func-
tions are symmetric around them, and αi coefficients.

Despite of the fact that globally supported RBFs are el-
egant solutions for solving variational problems, in practice
they are difficult to use: the matrix Aφ,p is dense, though
the complexity to solve the linear system (see equation 3) is
O(N3). Wendland[6] makes an excellent survey on the com-
putational aspect about the use of Radial Basis Functions, and
gives some techniques to decrease the complexity.
Recently some authors have introduced new basis which over-
come lots of RBF limitations: Compactly Supported Radial
Basis Functions [2] (CSRBFs). However, a serious difficulty
arises with using this kind of functions. If the support size
is too small, the reconstructed signal will not be continuous;
on the other hand, the matrix Aφ,p becomes dense if the sup-
port size is too large. That is why CSRBFs are mainly used

for quasi-uniform samples. A point set P is called quasi-
uniformly distributed on a bounded domain Ω ⊂ R

d, when
the quotient of the fill distance hP,Ω (hP,Ω = max

p∈Ω

min
pi∈P

‖p−

pi‖) and the separation distance qP (qP = min
pi �=pj∈P

‖pi −

pj‖) is bounded above by a constant.

3. MULTI-SCALE RECONSTRUCTION WITH
RADIAL BASIS FUNCTIONS

3.1. Unified Multi-Resolution Scheme

With single scale methods, it is difficult to efficiently recon-
struct a signal from irregular samples, and especially with CS-
RBFs. Multi-resolution recursive schemes [3, 4] have been
introduced to overcome this difficulty. Differences between
these approaches reside in the way to determine centers cl

i

and coefficients αl
i.

Here, all these approaches are unified in the following
equations

f0(p) =
M0−1∑

i=0

α0
i φ

(
‖p−c0

i‖
σ0

)
f l(p) = f l−1(p) + dl(p)

dl(p) =
Ml−1∑
i=0

αl
i φ

(
‖p−cl

i‖
σl

) (4)

, where f l and dl are, the approximation or interpolation at
the resolution level l, and details added to the approximation
at the resolution level l − 1, respectively.

3.2. Multi-Resolution Interpolation

In the interpolation approach [3], data is decomposed into a
hierarchy of nested subsets P0 ⊆ P1 ⊆ ... ⊆ Pk = P .
The data hierarchy is computed by point removal algorithms
with different strategies. Then associated data to centers are
interpolated at each level.

Recently, Iske et al. [4] presented a non nested hierarchi-
cal data decomposition based on generalized quadtrees. At
first, they constructed an initialization by using center of the
leaves as centers and interpolated the mean value of the data
contained in the leaf. However, in some pathological cases,
this hierarchy and interpolation would not be efficient.

3.3. Our Proposal: Multi-Resolution Approximation

We will propose a new approach using hierarchical clustering
of samples for CSRBF center hierarchy definition (Section
3.3.1). Then we will propose to compute a least square ap-
proximation of the samples (Section 3.3.2).

3.3.1. Clustering Method

Here, we will use a binary space partition, based on principal
component analysis, for clustering data. From a given cluster
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Kk, we will compute the centroid ck and its associated covari-
ance matrix Covk. Then a hyperplane, which splits the cluster
into two, is defined by the centroid ck and the eigenvectors v0

associated to the largest eigenvalue µ0 of the covariance ma-
trix. By considering of at its lowest level, the whole point set
P as a cluster, we can compute a tree, where the leaves would
be samples. It is possible to define various strategies to split
one cluster, but in the initialization phase we will only con-
sider the number of samples contained in the cluster Kk, i.e.
if |Kk| > m, then Kk is split, where m is a predefined value.

Fig. 1. The Binary Space Partition Clustering Method in the
2D case. The circles represent samples, with lines the split-
ting hyperplan, and square cluster centroids.

3.3.2. Approximation

Consider the level l, with a list of clusters
{
Kl

j

}
j={0,...,Ml−1}

and their respective centroid
{
cl

j

}
j={0,...,Ml−1}

, and the ap-

proximation at the previous level f l−1. We use Wendland’s
CSRBFs[2] and compute the approximationf l by minimizing
the Mean Square Error MSEl:

MSEl =
N−1∑
i=0

(
si − f l(pi)

)2

Finally, it is easy to calculate the coefficients αl =
{
αl

j

}
,

where j = {0, ..., M l − 1}:

αl =
(
Bφl · Bt

φl

)−1

· Bt
φl · r

l

, where Bφl(i, j) = φl

(
‖pi − cl

j‖
)
, φl(r) = φ(r/σl), and

rl(i) = si − f l−1(pi).

3.3.3. Algorithm

At first, we shall compute a list of clusters K0
j , so that they

contain at least fewer than m samples, and we compute the
first approximation f0. Then iteratively for a given level l,
for all clusters Kl

j we will compute the local error ηl
j , and

compare it with a user defined threshold ε.

ηl
j = max

pi∈Kl
j

∣∣si − f l(pi)
∣∣ (5)

If the error ηl
j is higher than ε, the cluster Kl

j is split into
two, and at the next level two new centers will be added. Then
we compute a global least square approximation as described
above. Note that we will add functions, only where the local
error is the largest.

4. RESULTS

We have implemented the proposed algorithm for signals of
dimensions d = 1, 2, 3. However, we shall only present here
some results for d = 1, 2.

4.1. 1D Signal

In order to illustrate our approach, we shall consider the signal
with N = 100 random samples uniformly distributed on [0, 1]
as follows:

s(x) = 2 sinc(10x) + 0.75 e−2.5|x−0.75| sin(50x + 0.1)

−2 e−10x cos(55x), x (6)

Fig. 2(a) shows the initial approximation with a cluster
containing less than m points (|K0

j | < m = 40). Then other
figures present result at different resolutions, l = 2, 3, 4, for a
given threshold ε = 0.1. Fig. 3 illustrates the influence of the
user defined threshold ε with noisy data. As expected, if ε is
too low (3(a)), the reconstructed signal captures noise, and if
it is too large (3(c)), the reconstructed signal loses the infor-
mation from the original signal. In Fig. 4, we will present the
error according to the threshold value ε, for different SNRs.
Clearly there is always an optimal value ε where the error is
the lowest.
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Fig. 2. Approximation of irregularly sampled signal at differ-
ent resolutions : the lowest resolution 1 (2(a)), resolution 2
(2(b)), resolution 3 (2(c)), and the highest resolution 4 (2(d))
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Fig. 3. Influence of the threshold ε on the reconstructed sig-
nal, with noisy data (SNR=30dB). With too low ε = 0.2
(3(a)), optimal ε = 0.37 (3(b)), for too high ε = 0.7 (3(c)).
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Fig. 4. l2 error according to the threshold ε, for different
SNR:27dB(x), 30dB(o), 33dB(�)

4.2. 2D Signal

We have tested our algorithm on the peaks function of Matlab R©

with N = 500 random samples uniformly distributed (figure
5(a)). Figure 5 illustrates the initial approximation with a
cluster containing fewer than m = 100 samples, and reso-
lutions : 2 and 6.

5. CONCLUSION

We have proposed a new multi-resolution scheme for d di-
mensional signals approximationwith irregular samples with-
out any restriction on their positions. Experimental results
prove the effectiveness of this approach for processing noisy
data by using the appropriate threshold for CSRBF center se-
lection. In future works, we will propose an estimation of the
threshold according to the SNR.
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Fig. 5. Approximation of an irregularly sampled surface.
(5(a)) sample locations in a top view. The lowest resolution 1
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