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Abstract— We propose a level-crossing A/D (LCA/D) converter
which can be modelled with an oversampling A/D followed by
a low resolution quantizer. In this paper we will study the
reconstruction of non-bandlimited inputs processed by such a
system and compare its performance to uniform sampling.

Index Terms– quantization, level-crossing sampling, Haar
wavelets, Cramer-Rao bound.

I. INTRODUCTION

In this paper we focus our study on the reconstruction of
real non-bandlimited periodic signals in both deterministic
and stochastic frameworks. The more conventional uniform
sampling, better known as Nyquist sampling, is related to the
approximation used in the Riemann sum, shown in Fig.1(a),
where amplitudes are taken at fixed intervals. When the sig-
nals are bandlimited, Nyquist sampling can reconstruct them
perfectly in the L2 sense, assuming samples are known with
infinite precision.

For some other signal types of interest, for example, non-
bandlimited waveforms, Nyquist sampling neither sufficiently
nor efficiently captures the characteristics of the input. The
classical approach is to prefilter the non-bandlimited signals
with an anti-aliasing filter at sufficiently high frequency and
then sample the resulting bandlimited field. Sometimes this
approach cannot be implemented, such as in certain sensor
networks where nodes have limited sensing and processing
power. Other times it is not desirable, especially when infor-
mation embedded in higher frequency content is valuable. As
such, aliasing error is inevitable. This prompts us to investigate
an alternative sampling scheme.

Sampling by level-crossing takes its cue from the Lebesgue
integral that approximates with a fixed set of amplitude
values, and samples are taken instead on the time axis, as
shown in Fig.1(b). This form of approximation follows the
characteristics of the waveform. We sample more often when
the waveform is rapidly varying or is bursty, and less when
otherwise. As such, it lets the signal dictate the frequency of
sampling and quantization.

For example, one type of signals that benefits from level-
crossing sampling is the non-bandlimited random telegraph
waveform. Sampling it uniformly will certainly incur aliasing
errors. A better way is to extract the nonuniform transitions
using zero-crossing sampling [3],[5], since the information
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Fig. 1. a) Approximation of a waveform by the Riemann sum, b) by Lebesgue
sum.

content of the signal lies entirely in these crossings. The signal
can thus be perfectly reconstructed. This leads us to believe
that sampling by level-crossing has certain advantages that
warrant further exploration. In fact, representative works by
[1], [2], and [4] have looked into zero/level-crossing repre-
sentation of various classes of waveforms such as wavelets,
and bandlimited inputs. Here we want to illustrate the advan-
tages of sampling by level-crossing over uniform sampling.
Specifically, we analyze a class of finite-dimensional, non-
bandlimited Haar wavelet series WH , defined in detail in the
following section.

II. THE CONSIDERED NON-BANDLIMITED FIELD

Let x(t) be a real deterministic signal with finite time
support on [0, T ], T > 0. We assume x(t) is a non-bandlimited
Haar wavelet series, x(t) ∈ WH ,

WH = {x(t) : x(t) =
M−1∑
k=0

2k−1∑
l=0

akl

√
2k

T
ψ(2k t − lT )}, (1)

where ψ(t) is a Haar wavelet:

ψ(t) ≡
⎧⎨
⎩

1, 0 ≤ t < T
2 ;

−1, T
2 ≤ t < T ;

0, otherwise.
(2)

Each ψkl(t) =
√

2k

T ψ(2k t− lT ) is a Haar wavelet recov-
erable by zero-crossing. A sum power constraint is imposed
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upon WH as well:

1
T

∫ T

0

|x(t)|2dt ≤ E. (3)

As such, WH is a set of non-bandlimited signals with finite
energy and finite degrees of freedom, 2M − 1 to be exact, on
finite time support. We want to reconstruct such waveforms
using the level-crossing sampling scheme, then illustrate its
merits over the periodic sampling method.

III. LEVEL-CROSSING A/D MODEL

Let L = (l1, . . . , lm, . . . , l|L|) be an ordered set of distinct
discrete levels uniformly spaced δ apart, δ > 0. Each lm
requires only finite resolution. We define a level-crossing A/D
(LCA/D) as the superposition of a level sampler Lδ and the
uniform sampling operation xn = x(nτ), where τ is the
sampling period.

Definition 3.1: The level sampler Lδ with a fixed spacing
δ is the mapping Lδ: R → δ Z:

Lδ(x) = δ �x/δ�.
A waveform x(t) is said to have a level-crossing at t if
Lδ(x(t−)) �= Lδ(x(t+)).

Letting t = (t1, t2, . . . , ti, . . . , tQ) ∈ [0, L] be the resulting
set of crossing instants. The level-sampled signal Lδ(x) is
then uniformly sampled to become a discrete-time, discrete-
amplitude (DTDA) signal Lδ(x)n.

IV. COMPUTING THE MSE

A. MSE and the bit rate in a deterministic framework

In a deterministic environment, the accuracy of reconstruc-
tion depends on the resolution of the samples. Here we are
motivated by [3] to use the encoding bit rate to evaluate the
merit of level-crossing. Specifically, for a fixed fidelity of
reconstruction, we will compare the encoding bit rate of the
level-crossing samples to that of the uniform samples.

Now consider waveforms in WH that have exactly Q
transitions, 1 ≤ Q ≤ 2M , during the signal period T . Their
locations are unknown.

Let us characterize the resolution of LCA/D with bit rate
BL. The information of Lδ(x) is entirely embedded in its
transition samples (ti, x(ti))1≤i≤Q, where x(ti) = lm. Each
amplitude can be represented with log2 |L| bits, and since
transitions for signals of class WH happen on integer multiple
of T

2M , each ti requires M bits resolution. As such,

BL =
(log2 |L| + M) · Q

T
. (4)

In the case of periodic sampling, amplitude samples, K bits
each, are stored sequentially, requiring a bit rate of

BN =
K · 2M

T
. (5)

The sampled signal is generally different from the origi-
nal and incurs a nonzero error. We make the conventional
assumption that the error is uniformly distributed white noise
independent of the input. Let the resolution of the LCA/D be

given by δ = Xm

|L| , where Xm be the maximum amplitude
range of x(t) imposed by the power constraint in Eq.2. For a
fixed mean squared error, we find that level-crossing requires
exponentially smaller bit rate than periodic sampling does:

BL = 2−(M−log2 Q)BN +
Q

T
M. (6)

Note that in order to keep the comparison fair, the periodic
samples are quantized with L as well, thus K = log2 |L|. This
highlights the efficiency of level-crossing sampling, in that it
lets the signal dictate the amount of sampling. For example
when M = 10, and Q = 26, then the BL ≈ 2−4BN .

B. Q level-crossing samples vs. Q uniform samples in a
stochastic framework

In this section, we will highlight the advantage of level-
crossing sampling by comparing its Cramer-Rao bound (CRB)
to that achieved by uniform sampling. To keep the comparison
fair, Q samples are used in each scheme. When the waveform
is bursty, we will show that level-crossing has a lower CRB.

Consider the setup shown in Figure 2. The input is transmit-
ted over an AWGN channel, where the receiver uses the output
of the channel y(t) to construct estimates â. The samples
are obtained by a sample-and-hold circuit of finite bandwidth,
modelled as:

y(ti) =
1
τ ′

∫ ti+τ ′

ti

y(t)dt. (7)

The samples are Gaussian, y(ti) ∼ N
(
x(ti),

Nτ′
2

)
, Nτ ′ =

No

τ ′ .
Since the channel is noisy, distortion is inevitable. The

variance of estimates based on Q observations is bounded by
the CRB:

V ar(âkl) ≥ Nτ ′/2∑Q
i=1 ψ2

kl(ti)
. (8)

The lower bound can be met in principle, under the Gaussian
assumption, with a simple linear unbiased estimator. The
denominator is a signal-dependent term that dictates the lower-
bound. Specifically, it depends on where samples are taken.
Now let us consider the following example, an simplified but
representative scenario of UWB signalling, to gain an insight
into the advantage of level-crossing sampling.
An example of estimating a bursty waveform: Suppose x(t)
is bursty, such that its energy is concentrated in an unknown
small interval (a, b) ∈ [0, T ], i.e. 1

T

∫ b

a
|x(t)|2dt = E, of

length b−a < T
Q . Furthermore assume that only Q unknowns

are nonzero.
Let Q samples, (ti, y(ti))

Q
i=1, be obtained by level-crossing

during (a, b). Since level-crossing lets the signal dictate when
to sample, most samples are located within (a, b), where the
waveform resides. Assume the ti’s have perfect precision, then
estimates made with these Q samples have variance bounded
by:

V ar(âkl �= 0) ≥ T

α · Q · Nτ ′

2
, 1 ≤ α ≤ 2k. (9)
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Fig. 2. The stochastic framework considered in this paper.

The other akl’s are zero anyway, so they need not be estimated.
In other words, level-crossing lets the signal decide where
samples are to be taken, thus allowing us to obtain only the
useful ones.

On the other hand, when the Q samples are obtained
uniformly, spaced τ = T

Q apart, little useful information
is obtained. They carry no information on the parameters
modulated by bases with time support less than sampling

period. The ψkl(t)|ti=iτ take on values ±
√

2k

T and 0, therefore

it is entirely possible that for certain akl,
∑Q

i=1 ψ2
kl(ti) sums

up to 0. As such, the Fischer’s information is 0, and the bound
provided by Eq.(8) is invalid. As such, no estimation can be
made.

The worst scenario occurs when (a, b) ⊂ (iτ, (i + 1)τ ],
where the signal is entirely missed by sampling. All samples
y(iτ) = 0, ∀ i, thus estimates âkl = 0, ∀ k, l. Otherwise only
1 out the Q samples is taken within the interval (a, b) where
the signal resides. As such, at most M out of the Q unknowns
can be estimated, and the CRB of nonzero estimates is much
larger:

V ar(âkl �= 0) ≥ T

2k

Nτ ′

2
. (10)

We have shown that uniform sampling is particularly unsuited
for this type of input. It mathematically prove the intuitive fact
that piecewise constant functions are more efficiently sampled
using a level-crossing scheme.

V. CONCLUSION

We proposed a new sampling scheme by level-crossing
which allows the input signal to dictate how much we sample.
We focused our study of LCA/D on a class of finite dimen-
sional, non-bandlimited signals on finite time support. It was
shown in both a deterministic and a stochastic framework, for
certain types of waveforms, LCA/D outperforms periodic sam-
pling. Furthermore, we can extend our study to other classes
of signals, such as truncated Fourier Series, or Haar wavelet
series with non-integer dilation and translation parameters.
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