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ABSTRACT

Maximum Likelihood (ML) is a popular and widely used statistical 

method, and while it is effective, its major short-comings are that it 

is a biased and non robust estimator. This paper proposes a formal 

establishment of an Optimisation of ML (OML) by approximating 

the true distribution minimising the bias, and exploiting the 

underlying relationship between ML and the maximum entropy 

method. OML exposes the inefficiency of the classical ML in the 

orthogonal least square error minimisation sense, for a number of 

finite sample datasets. The robustness of the proposed OML 

method in finding an estimate within the boundaries of the 

parameter space is also proven. Under the same conditions, OML 

consistently provides a more global and efficient estimation, so 

both theoretically and empirically establishing its superiority over 

ML in terms of efficiency and robustness.

1. INTRODUCTION 

Accurate statistical estimation methods are crucial tools for many 

research areas, especially those which are dependent on data 

analysis. Some of the currently available statistical estimation 

techniques include, frequency substitution, method of moments, 

the family of least square (LS) estimator variants, entropy and 

information theoretic methods, functional divergence based 

methods and Maximum Likelihood (ML) [6] estimation. Among 

this eclectic group of estimation methods, ML-based techniques 

are the most popular since they provide a simple and 

asymptotically efficient estimator [1].  ML is extensively used in 

the digital signal processing domain in diverse application areas 

ranging from target detection [3], classification, spectral 

estimation, multi-array signal processing, coding through to time 

series analysis.  

There has been an element of controversy over the use of ML 

methods, with some researchers questioning its soundness [5]. It is 

broadly accepted that ML is not as good an estimator as the 

Uniformly Minimum Variance Unbiased (UMVU) technique, 

which is derived by fulfilling the condition of unbiased estimation 

with minimum variance [1]. While theoretically superior, UMVU 

estimators cannot always be applied in practical scenarios as they 

are difficult to formulate and their existence is often inadmissible 

i.e., it may not be feasible to simultaneously achieve both unbiased 

and minimum variance estimation. Also unlike ML, UMVU does 

not adhere to the functional invariance property and typically 

incurs a much higher computational complexity. 

The principal drawback of ML is that it is a biased, non robust 

estimator and highly sensitive to parameter perturbations. This has 

motivated a number of strategies to optimise the ML method, with 

two such optimisation methods being i) Robust Estimation [7] and 

ii) Stein Estimation [12]. The former avoids the fundamental 

drawback of becoming trapped within a boundary of the ML 

surface so that estimation is not overly influenced by only a few 

observations, while the latter addresses the key issue of bias 

minimisation in ML estimation. In both cases, the general 

improvements achieved however occur at the pyrrhic cost of 

compromising both the simplicity and asymptotic efficiency of 

ML[5].  

This paper proposes a generic Optimisation of Maximum

Likelihood (OML) by minimising the bias by exploiting the 

underlying relationship between ML and the Maximum Entropy 

(ME) method. This theoretical outcome is demonstrated for a 

number of reference datasets from diverse domains. The real 

advantage of OML is shown to be that it consistently generates an 

improved estimate, while retaining both the simplicity and same 

order of computational complexity as ML. One application of the 

proposed OML method for source localisation has been presented 

[10], with estimation results confirming a significant improvement 

compared with ML.  

The remainder of the paper is organized as follows: Section 2 

presents a short review of classical ML estimation theory together 

with the theoretical foundations for the new OML estimator. 

Section 3 analyses the experimental performance of the OML 

technique, while Section 4 provides some conclusions. 

2.  THE MAXIMUM LIKELIHOOD METHOD 

This section firstly presents an overview of the underlying 

principles of ML estimation and the ME method, before providing 

an optimisation of ML by minimising the bias. 

2.1. Classical Maximum Likelihood Estimator  

ML estimation was originally developed by Fisher in the 1920s 

[6], to derive parameter values  which maximise the likelihood 

function p(Z| ) for an observed dataset Z. Estimation is the joint 

process of summarisation and inference from obtained 
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summarisation [5]. The distribution of some observed data can

always be represented using an appropriate summarisation model, 

which is defined by the set of parameters to be estimated.

Given a set of observations , which

are m independent and identically distributed (iid) variables, the 

likelihood of these observations is defined as:- 
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Where is the parameter of an estimation model for the 

observations. The log-likelihood function is defined as:- 
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The fact the log-likelihood function can be used instead of the

likelihood function in ML estimation highlights the unique

functional invariance property of ML. However, in general, ML 

estimators alone are an insufficient statistic to fully describe a

distribution [13].

2.2. The Maximum Entropy (ME) Method

This estimator [8] attempts to find a suitable parameter which

maximises the entropy H defined in the following equation, subject 

to the constraints imposed by the available information.
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It provides a solution that satisfies all known conditions, but is 

also maximally noncommittal with regard to missing information.

2.3. Optimisation of Maximum Likelihood (OML)

The relationship between ML and the ME method, based upon the 

Wallies Derivation of Entropy [8] is formalised in the following 

Theorem.

Theorem 1: In an asymptotic sense, the maximum likelihood

method is exactly the same as the maximum entropy method.

Proof: Let there be m data samples Z = (Z1, Z2, …, Zm) collected 

from a sampling space S, with n being the cardinality of S. Now 

suppose there are a total of ni data of type Zi. As the total 

probability sum equals unity, then: 
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The sampling process is modelled as generalised Bernoulli 

trials [9] where data sample Zi = ni represents the selection of i-th

event for ni times. Each event will be equally probable for a fair 

experiment and will have a probability of 1/m.  The likelihood of

finding Z from S is thus represented by the following multinomial

distribution:-
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Hence, the sampling distribution that maximises the likelihood

is that which also maximises W as follows: 
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where Stirling’s approximation nnnn log!log is used as

n ,
n

n
p i

i represents the asymptotic probability of the ith

sample and H(p1, p2, … , pm) represents the entropy.

Having presented the relationship between ML and the

maximum entropy method in the infinite sampling domain, the

following theorem finds a suitable simplification for the finite 

sampling domain.

Lemma 1: Within the finite sampling space, the maximum 

entropy method under asymptotic conditions can be simplified to 

the expected negative log likelihood.

Proof: Let N be the size of the finite sample space and f be the true 

(asymptotic) distribution of events. Using the same notations as in

Theorem 1:- 
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Lemma 1 reveals that the true (asymptotic) distribution of events f

is the key parameter to be estimated if ML is to be optimised. A

corollary of this finding is that the optimal approximation of f will

therefore yield an optimal ML, which forms the basis of Lemma 2,

where for clarity the Uniform Gaussian Mixture Distribution

(UGMD) is formally defined as an equally-weighted average of a

number of Gaussian distributions.
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Lemma 2: A Uniform Gaussian Mixture Distribution represents

an optimal approximation to the true distribution for ML

estimation process based on bias minimisation criteria.

Proof: Let m be the number of observations of the Gaussian

distribution with the ith observation having i mean and i
2

variance, and let f be the mean of the true distribution. The bias is

defined as the difference between the estimation and true mean

values [2], so the sum of square bias is:-
m
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Hence, the optimal approximation of the true distribution is a

UGMD.

The physical significance of UGMD is that it maximises the

information content of the component distributions and so 

inherently improves the decision-making based on the criteria of 

entropy maximisation. Now combining Theorem 1 and Lemma 1

and 2, the optimal ML estimation can now be formulated in

Theorem 2.

Theorem 2: The optimal maximum likelihood estimation is 

obtained by maximising the expected negative log likelihood

based on UGMD as the data distribution.

Proof: Let fOML be the UGMD, which from Lemma 2, produces the 

optimal approximation to the true distribution f. From Lemma 1,

the OML estimation OML is then given by:-
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Without loss of generality, the following simplification to

OML is made:-,
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which corresponds to the OML estimation of parameter . Note,

that since there is only one additional term in (5), OML will have 

exactly the same order of computational complexity as ML.

3. EXPERIMENTAL RESULTS 

This section explores the experimental performance of the OML

technique. The empirical context is firstly provided, before a

comparative analysis is presented with the classical ML method.

To compare OML and ML, the statistical reference dataset

library from the National Institute of Standards and Technology

(NIST) [11] was used, which contains many data-sets along with 

regression models and certified parameter estimation values. 

Nonlinear regression datasets were selected as it is generally

difficult to find correct estimations for this category. The library

contains several sets classified into lower, average and higher

levels of complexity. As the objective is to compare the OML and

ML methods, the number of parameters and precision of the

estimation was not the primary focus, so low precision results were

compared for datasets having a small number of parameters (< 5).

All the results were numerically evaluated using Least Square

(LS) and Orthogonal Least Square (OLS) error metrics [4]. ML is 

a generalisation of the LS estimator and is identical to LS for a 

Gaussian parameter distribution, thus throughout the experiments,

where a Gaussian parameter distribution is assumed, the LS error 

represents the ML estimation error. It is accepted that an OLS fit is

superior to LS as it represents the true error, though it is 

increasingly difficult to find a generalised OLS fit for higher 

dimensional problems [4]. A complementary approach is therefore

adopted to validate the theoretical basis that OML does inherently

minimise the OLS error.

Figure 1 provides a visual insight into how the OML method

differs from ML and generates a better fit in an OLS sense. The 

reference dataset BoxBOD (Biochemical Oxygen Demand) [2] was

used as it is categorised as a dataset requiring a higher complexity

estimation method for parameter estimation.

(a) (b)

(c) (d)
Figure 1. Comparison of ML and OML using 2 parameter BoxBOD dataset: 

(a) ML Contour, (b) OML contour (c) ML surface, (d) OML surface.
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Both the contour and likelihood surfaces generated by ML

(Figures 1a and 1c) show the monotonic nature of ML in the 

decision making process, while conversely Figures 1b and 1d show 

the brisk decision curves of the OML method. The OML surface in 

Figure 1(d) exhibits several localised peaks which correspond to a 

better estimation within the parameter space. The ML peak in 

contrast is a sub-optimal solution for this particular dataset and 

also reveals the global optimal in one of the boundaries in the

parameter space, so indicating a lack of robustness in the ML

estimation.

The original data points and both the ML and OML 

regression curves are plotted in Figure 2, from which it is visually

evident that the OML provides a superior fit so justifying the OML

theory as charted in Table 1.
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Figure 2. Original points and regression curves for ML and OML

estimated parameter values for the BoxBOD dataset.

Table 1 summarises the results obtained by applying both 

OML and ML to several different datasets, with the certified, OML

and ML parameter values given in columns 2, 3 and 4.

Dataset

Name

(Model)

Certified

Param.

Values

ML

Param.

Values

OML

Param.

Values

ML

LS

Error

OML

LS

Error

ML

OLS

Error

OML

OLS

Error
Nelson

(Exponential)

2.59

5.617E-09

-5.77E-02

2.64

5.3E-09

-5.9E-02

2.510

8.2E-09

-5.20E-02

555.886 968.205 7.171E+05 7.019E+05

Chwirut1

(Exponential)

0.190278

6.1314E-03

1.05309E-02

0.18

0.0059

0.011

0.18

0.0056

0.011

2390 2562.9 34.0775 33.8886

Rat42

(Exponential)

72.462

2.618

0.067

72.000

2.700

0.070

68.000

2.700

0.080

1424.0 1424.6 1421.7 1421.1

MGH09

(Rational)

0.192807

0.191282

0.123056

0.136062

0.1930

0.1890

0.1230

0.1350

0.1930

0.1890

0.1230

0.1350

3.0753E-04 3.0753E-04 3.0753E-04 3.0753E-04

BoxBOD

(Exponential)

213.81

0.5472

214

0.55

233

0.34

1168.9 2913.9 117.8341 5.8787

Bennett5

(Miscellaneous)

-2523.50

46.7365

0.93218

-2400

46

0.9

-2400

46

0.9

0.0234 0.0234 0.0173 0.0173

Table 1 Comparative estimation results for maximum likelihood (ML) and

optimised maximum likelihood (OML) methods for several reference

datasets.

It is evident from Table 1 that OML consistently provides 

better results in the sense of OLS error minimisation between the

estimation and observed data. While the results for datasets

MGH09 and Bennett5 are the same for both OML and ML, for all 

other datasets, as expected, the LS error using OML increased

since ML always provides an optimal result in a LS sense for 

Gaussian distributions. The largest variation in the ratio of OLS

errors is achieved for the BoxBOD dataset, where the error is 

reduced by a factor of 20. Indeed, for all of these reference

datasets OML decreases the OLS error so providing a consistently

superior fit and a better estimation capability compared with ML.

4. CONCLUSIONS 

This paper has presented an Optimisation of the Maximum

Likelihood (OML) method using bias minimisation of Maximum

Likelihood (ML) and exploiting its relationship with the maximum

entropy method. OML has been applied to a series of datasets from

diverse domains, with results revealing significant improvement

for some datasets in the sense of Orthogonal Least Square (OLS)

error minimisation, while for others OML is shown to be at least as

good as ML, for exactly the same order of computational

complexity. The enhanced robustness of OML has also been 

shown using a comparative example in which ML generated a 

suboptimal result in the OLS error minimisation sense, and also

failed to find an optimal solution at the boundary of parameter

surface. Under identical empirical conditions, the OML method

provided a more accurate and robust estimation, thereby

establishing its superiority from both a theoretical and empirical

perspective.
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