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ABSTRACT

In this paper the sampled signal reconstruction problem is formu-
lated and solved as the sampled-data H 2 smoothing problem, in
which an analog reconstruction error is minimized. Both infinite
(non-causal reconstructors) and finite (reconstructors with relaxed
causality) preview cases are considered. The optimal reconstructors
are in the form of the cascade of a discrete-time smoother and a gen-
eralized hold (interpolator). In the particular case of reconstructing
polynomial signals with infinite preview, the proposed procedure re-
covers the cardinal B-spline reconstructors.

1. INTRODUCTION AND PROBLEM FORMULATION

This paper studies the problem of reconstructing an analog signal
from sampled noisy measurements. The problem is presented by the
scheme in Fig. 1, where v is the analog signal to be reconstructed
and Ny is the discrete measured signal, which is the sampling (with
the ideal sampling device Sh with the sampling period h) of an ana-
log signal y corrupted by a discrete noise Nn (which can also be used
to account for quantization errors). Our goal here is to design a hy-
brid, digital/analog, reconstructor (estimator) K generating an esti-
mate Ov of v so that the estimation error e D v � Ov is “small” (in
a sense to be defined latter). As is conventional, we allow the es-
timator to have access to “future” measurements, either the whole
future (fixed-interval smoothing formalism) or within a fixed-length
window (fixed-lag smoothing formalism). The latter is equivalent to
reconstructing a delayed version of v.

Note that the signals v and y do not need to be the same. This
does not complicate the solution while it makes the setup more flex-
ible. For example, we can formulate the problem of reconstructing
continuous-time velocity from sampled position measurements (or,
equivalently, acceleration from sampled velocity measurements), in
which case v D Py. We assume that both v and y are modeled as
outputs of a given continuous-time system G driven by a common
input w, which can include fictitious inputs used to model v and y,
continuous-time disturbances, etc. The signal generator G, which is
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Fig. 1. The problem setup
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is used here to account for properties of v and y, such as their spec-
tral densities, cross correlation, bandwidth, etc. We also assume that
Nn D ˚1=2 Nwn, where Nwn is a unit-variance white noise sequence and
the matrix ˚ � 0 is the spectral density of Nn.

The reconstruction problem is typically treated in a non-model-
based fashion, i.e., without modeling the signals v and y. For exam-
ple, one may fix a continuous-time interpolant (the D/A circuit), like
polynomial splines, and then add a digital filter to guarantee the con-
sistency of the reconstruction, see [1] and the references therein. The
model-based approach, under the assumption that the D/A circuit is
the zero-order hold followed by a known analog postfilter, was in-
troduced in [2], where H 1 optimization was proposed to determine
the digital part of K . The common shortcoming of the available
solutions is their limited ability to handle (non)causality constraints
on K . The spline-based techniques produce fixed-interval recon-
structors, the impulse response of which is then truncated to pro-
duce fixed-lag solutions. This approach can be justified only when
the fixed-interval solutions decay rapidly, so that the decay rate be-
comes an important factor in the choice of continuous-time inter-
polants. This might compromise the reconstruction performance.
The model-based design of [2,3] addresses the fixed-lag situation by
considering the reconstruction of the delayed signal. Yet the delay
there is embedded into G, which leads to solutions whose computa-
tional burden grows rapidly with the increase of the preview length
and also obscures the problem structure.

In this paper we show that the reconstruction problem can be ef-
ficiently addressed in the H 2 (least-mean-squares) framework. Our
purpose here is twofold: we demonstrate that closed-form solutions,
the computation burden of which do not depend on the length of
preview, can be derived and that the model-based problem formula-
tion can result in easily interpretable solutions, containing as partic-
ular cases some known results, such as B-spline reconstructors [4].
More specifically, in deriving our results we make use of the lifting
transformation [5] and the technique of [6] (although because of the
space limitations we omit most derivation details). The optimal re-
constructors enjoy the continuity and, when v D y and ˚ D 0 (i.e.,
no measurement noise), consistency properties. Moreover, in the
special case when Gv.s/ D Gy.s/ D 1=sm and ˚ D 0 we recover
the standard B-spline solutions of [4] in the fixed-interval setup.

As mentioned above, we adopt the H 2 formalism in measuring
the reconstruction performance. This means that we measure it by
the H 2 norm, denoted as k�k2, of the error system
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from the exogenous signals w and Nwn to the reconstruction error e

(the dark box in Fig. 1). Although this is a hybrid and periodically
time-varying system, its H 2 norm is well defined through the lifted-
domain representation [7, 8]. The stochastic interpretation of this
norm is the averaged variance of e when w and Nwn are uncorrelated
zero-mean continuous- and discrete-time white Gaussian processes
with unitary covariances (least mean-square estimation). The deter-
ministic interpretation is the energy (L2 norm) of e, averaged over
one sampling period � 2 Œ0; h�, when w.t/ D ı.t � �/ and Nwn is the
unit pulse.

Thus, the problem we address is the minimization of kGek2 by a
stable (i.e., bounded as an operator from `2 to L2) estimator K . We
also require that the operator DhlK be causal, where the notation
D� stands for the �-delay operator with the transfer function e�s� .
This is equivalent to allowing K to use previewed measurements,
with the preview length of l steps. When l , called the smoothing
lag, is finite, the estimation problem is referred to as the fixed-lag
smoothing. When l D 1, in which case no causality constraints are
imposed, the problem is referred to as the fixed-interval smoothing.
Throughout the paper we assume that the state-space realization in
(1) is minimal, Cy has full row rank, and the pair .Cy ; eAh/ is de-
tectable, i.e., has no hidden modes outside the open unit disk.

2. FIXED-INTERVAL SOLUTION

We start with the fixed-interval case in which no causality constraints
are imposed on K . All proofs and derivation details are omitted
because of space the limitations.

2.1. Solution

Define the matrix exponential function

˙.t/ D

�
˙11.t/ ˙12.t/

0 ˙22.t/

�
D exp

��
A �BB0

0 �A0

�
t

�
;

where ˙11.t/ D eAt and ˙12.t/ D �
R t

0 eA� BB0eA0�d� e�A0 t . To
simplify the notation, we omit the parentheses when t D h, so that
we write ˙ instead of ˙.h/.

Let Y be the stabilizing solution to the following algebraic Ric-
cati equation (ARE):

Y D ˙11

�
Y � ˙�1

11 ˙12 � YC 0
y.˚ C CyYC 0

y /�1CyY
�
˙ 0

11: (2)

This is the standard ARE associated with the sampled-data filtering
for G [5] and under our assumptions (minimality of the realization in
(1), Cy has full row rank, and .Cy ; eAh/ is detectable) the stabilizing
solution such that Y > 0 and det.˚ C CyYC 0

y/ ¤ 0 always exists
(even for ˚ D 0). By stabilizing we mean that the matrix

NAL
:

D
�
I � YC 0

y.˚ C CyYC 0
y/�1Cy

�
˙11

is Schur (has all eigenvalues inside the open unit disk). Now, let
P � 0 be the solution to the Lyapunov equation

P D NA0
LP NAL C ˙ 0

11C 0
y.˚ C CyYC 0

y/�1Cy˙11: (3)

The main result of this section is formulated as follows:

Theorem 1. The unique solution of the fixed-interval reconstruction
problem is brought by the estimator K D Kc C Kac, where the
causal part Kc is the cascade of the digital filter with the transfer
function

NKc.z/ D z.zI � NAL/�1YC 0
y.˚ C CyYC 0

y /�1

and the hold function

�c.t/ D
�

Cv 0
�

˙.t/

�
I � YaP

P

�
; t 2 Œ0; h/;

and the anti-causal part Kac is the cascade of the digital filter with
the transfer function

NKac.z/ D .z�1I � NA0
L/�1.˙ 0

11 � NA0
LPY /C 0

y.˚ C CyYC 0
y /�1

and the hold function

�ac.t/ D
�

Cv 0
�
˙.t/

�
Ya
�I

�
; t 2 Œ0; h/;

where Ya
:

D Y � YC 0
y .˚ C CyYC 0

y /�1CyY � 0.

The generalized hold acts as follows. Let NKc generate the se-
quence f Nxkg, which has the same dimension as the state vector of G.
Then the continuous-time output of NKc, Ovc.t/, is calculated as

Ovc.kh C �/ D �c.�/ Nxk ; 8� 2 Œ0; h/; k 2 Z
C:

The anti-causal part behaves similarly.
To calculate the optimal achievable performance, i.e., the mini-

mal kGek2, we need to introduce the matrix

�
˙ �

0 ˙

�
:

D exp

�2
664

A �BB0 0 0

0 �A0 �C 0
vCv 0

0 0 A �BB0

0 0 0 �A0

3
775 h

�
:

Then the following result can be formulated

Lemma 1. The optimal performance attained by the estimator in
Theorem 1 is

JFI D

s
1

h
tr

��
�P I � PYa

�
˙�1�

�
�Ya

I

��
;

where Ya is as defined in Theorem 1.

2.2. Properties of the solution

The impulse response of the optimal estimator, k.t/, is its response
to the discrete unit pulse applied at the zero time instance, Nıi . This
response is a continuous-time signal, which completely determines
the estimator. Below, some properties of k.t/ are presented.

Proposition 1 (Continuity). The function k.t/ is continuous.

Proposition 2 (Consistency). Let Cv D Cy and ˚ D 0. Then the
sampled impulse response k.ih/ D Nıi .

Continuity of k.t/ implies that the resonstructed signal, Ov, is also
continuous. Consistency means that Ov at the sampling instances ih

equals the samples Ny (which are the samples of v in this case) on
which Ov is based.

For finite-dimensional signal generators G, the function k.t/
is a linear combination of piecewise exponential functions, possi-
bly including piecewise polynomials. It turns out that it is purely
piecewise polynomial if G consists only of integrators (in effect,
the proposition below states that we recover the cardinal B-splines
of [4]):
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Proposition 3 (Polynomial splines). Let Gv.s/ D Gy.s/ D 1=sm

and ˚ D 0. Then the optimal estimator k.t/ is the unique sta-
ble .2m � 2/-smooth .2m � 1/-degree polynomial spline for which
k.ih/ D Nıi .

Another important property of the optimal reconstruction is:

Proposition 4 (Analog performance recovery). Let ˚ D 0. Then
JFI recovers the performance of the continuous-time reconstruction
as h ! 0. In particular, when Gv.s/ D Gy.s/, limh!0 JFI D 0.

A possible alternative to the H 2 formalism adopted in this paper
is the H 1 approach [2, 5], in which an induced (minimax) L2/`2

norm of the error system Ge is minimized. A remarkable property
of the fixed-interval H 2 solution is that it is actually H 1 optimal as
well.

Proposition 5 (H 1 optimality). Estimator K in Theorem 1 mini-
mizes kGek1, i.e., it attains the minimal � for which

kek2
L2 � � 2

�
kwk2

L2 C k Nwnk2
`2

�
for all w 2 L2.R/ and Nwn 2 `2.Z/.

2.3. Illustrative examples

To illustrate the algorithm of ~2.1 and properties of the resulting re-
constructors, consider several simple examples.
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Fig. 2. Illustrations for Example 1

Example 1. We start with the reconstruction problem for�
Gv.s/
Gy.s/

�
D

�
1=s2

1=s2

�
D

�
1 0

1 0

� �
sI �

�
0 1
0 0

���1 �
0
1

�
:

This corresponds to the problem of reconstructing the position of a
process, the acceleration of which is modeled as a white noise.

Fig. 2(a) shows the impulse responses of three optimal estima-
tors under ˚ D 0 (perfect measurements), ˚ D 0:052 (small round-
off errors), and ˚ D 0:52 (larger roundoff errors), all with h D 1.
Under the perfect measurement conditions the reconstructor is ac-
tually the cubic B-spline interpolator combined with a digital filter
to guarantee the consistency of the reconstruction [4]. The estima-
tor is indeed consistent, see the solid line in Fig. 2(a), which is zero
whenever t D ih, i ¤ 0. When the measurements are noisy, the
reconstructors become smoother, yet are no longer consistent (in
fact, ShK is the Kalman smoother for the discretized process). The
optimal performance versus the sampling period h is presented in
Fig. 2(b) for the case of ˚ D 0. As expected, the optimal kGek2 is
an increasing function of h, which approaches zero as h ! 0.
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Example 2. As mentioned in the Introduction, our setup is well
suited to reconstruct more complicated functions of y. To illustrate
this point, consider the problem, similar to that in Example 1, yet
where the signal to be reconstructed is the velocity of y. This re-
quires Gv.s/ D sGy.s/, so that the matrix Cv in the state-space
realization of Example 1 should be replaced with

�
0 1

�
. The op-

timal estimators for ˚ D 0 and ˚ D 0:22 are shown in Fig. 3.
These curves can be thought of as approximate derivatives of the ı-
function. Similarly to what we saw in Example 1, the increase of ˚
makes the reconstructors smoother.
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Fig. 4. Illustrations for Example 3

Example 3. Now consider the reconstruction problem for

Gv.s/ D Gy.s/ D
s

.s C 0:01�/2 C �2
;

which represents the reconstruction of a signal with a dominant har-
monic at ! D � . Fig. 4(a) shows the optimal reconstructor for
h D 1 and ˚ D 0. This K is virtually an FIR filter (exponential
spline). Note that this sampling rate corresponds to the Nyquist fre-
quency of this harmonic, so that the reconstruction problem appears
fairly senseless because of a heavy aliasing around the dominant fre-
quency for this h. The purpose of this example is to demonstrate that
this situation does show up through a dramatic deterioration of the
achievable H 2 performance. Indeed, it is seen at Fig. 4(b), which
depicts the optimal performance as a function of the sampling pe-
riod, that there is a sharp performance peak at h D 1. Another peak
corresponds to the doubled Nyquist frequency, where the aliasing
also mixes the dominant harmonics (actually, there are peaks at each
h 2 N).
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3. FIXED-LAG SOLUTION

In the fixed-lag formulation we assume that DhlK is causal, i.e.,
that the reconstructor has access to measurements l steps ahead. The
resulting solutions are, thus, suitable for real-time implementation.

3.1. Solution

The notation used in this section are introduced in ~2.1. The main
result is formulated as follows:

Theorem 2. The unique solution of the fixed-lag problem is brought
by K D Kc C Kac,tr C Kcorr, where Kc is the causal part of
the fixed-interval solution, Kac,tr is the anti-causal part of the fixed-
interval solution whose impulse response is truncated to Œ�lh; 0�,
and Kcorr is the “correction” term, which is the cascade of the dig-
ital filter with the transfer function zl NKc.z/ and the hold function

�corr.t/ D
�

Cv 0
�
˙.t/

�
Ya
�I

�
. NAl

L/0P; t 2 Œ0; h/:

It is worth emphasizing that the causality constraint arises in
our treatment as part of the optimization problem. This is a clear
advantage over the approach in which causality constraints are im-
posed after the fixed-interval solution is obtained, by truncating the
impulse response of the latter. The performance of the resulting so-
lution depends then on the decay properties of the fixed-interval so-
lution. Theorem 2 says that this truncation should be corrected by
adding the term Kcorr. At the same time, the gain of the latter is
proportional to NAl

L, which decays exponentially as l increases (since
NAL is Schur). Hence, for a sufficiently large (with respect to the

dynamics of NAL) smoothing lag the truncation is justifiable.
Also, we can quantify the deterioration of the achievable perfor-

mance with respect to the fixed-interval case. We have:

Lemma 2. The optimal performance attained by the estimator in
Theorem 2 is

JFL D

s
J 2

FI C
1

h
tr

�
. NAl

L/0P NAl
L

�
I Ya

�
˙�1�

�
�Ya

I

��
;

Note that the performance deterioration is proportional to NAl
L,

so that JFL approaches JFI exponentially as l ! 1.

3.2. Properties of the solution

Remarkably, the fixed-lag solution inherits most properties of its
fixed-interval version. Namely, for every l > 0 the impulse response
of the optimal smoother is a continuous function of time (the conti-
nuity property does not extend to the filtering case, l D 0, though),
when Cv D Cy and ˚ D 0 the sampled smoother is still the unit
pulse (consistency), and when ˚ D 0 the continuous-time perfor-
mance is recovered as h ! 0. The fixed-lag H 2 optimal solution,
however, is no longer H 1 optimal.

3.3. Illustrative example

Example 4. Consider again the problem in Example 1 with ˚ D 0,
now in the fixed-lag setting. Fig. 5(a) presents the impulse responses
of the reconstructors designed for l D 1 (solid line) and l D 3

(dashed line). The former curve is quite different from that for the
fixed-interval k.t/ (shown by the black dotted line), it is even not
differentiable. The latter curve is much closer to the fixed-interval
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Fig. 5. Illustrations for Example 4

impulse response, especially in its causal part. The comparison via
the achievable performance in Fig. 5(b), which is the means to com-
pare these reconstructors, reveals even a better match between the
fixed-interval and fixed-lag with l D 3 solutions—their plots are
virtually indistinguishable. The solid curve there, corresponding to
l D 1, shows some deterioration of the achievable performance.

4. CONCLUDING REMARKS

In this paper we have presented a model-based H 2 framework for
the problem of reconstructing analog signals from sampled noisy
measurements, in which the task is formulated as a sampled-data
smoothing problem. The solutions derived in the paper are in the
form of exponentional / polynomial splines, which have clear struc-
tural properties (such as continuity, consistency, etc) and recover
in some special cases known structures. The proposed solutions
can also rigorously incorporate constraints on the length of preview
available to the reconstructor.
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