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ABSTRACT

One way of deriving the discrete Fourier transform (DFT) is by eq-
uispaced sampling of periodic signals or signals on a circle. In this
paper, we show that an analogous derivation can be used to obtain
the DCT (type 2). To achieve this goal, we replace the circle by a
line graph with symmetric boundary conditions, and define signal
space, filter space, and filtering operation appropriately. Further, we
derive the corresponding sampling theorem including the proper no-
tions of “bandlimited” and “sinc function.” The results show that, in
a rigorous sense, the DCT is closely related to the DFT, and can be
introduced without concepts from statistical signal processing as is
the current practice.

1. INTRODUCTION

For years, researchers have been using the DCT in image processing,
with the theoretical justification that it is an input-independent trans-
form best approximating (under suitable assumptions) the signal-
dependent Karhunen-Loève transform [1, 2, 3]. However, recent re-
search [4, 5] offers a possibly more satisfying explanation. Namely,
the DCT is a Fourier transform (in a strict mathematical sense), if the
space of signals, the space of filters, and the filtering operation are
chosen appropriately. The authors call such a choice a signal model
and show that models associated with standard time signal process-
ing are directed, whereas models associated with the DCTs are undi-
rected and are consequently called space models (since space, in
contrast to time, has no inherent direction).

As within this theory it is possible to have notions of filtering
and Fourier transform different from the usual ones associated with
time, an immediate task is to extend other concepts fundamental to
signal processing. Two such concepts are sampling and the associ-
ated sampling theorem—the focus of this paper. To give a more con-
crete idea of what we want to do, consider Fig. 1. On the top left we
start with periodic signals, or, equivalently, signals given on a circle
(which explains the term “compact”). The spectrum is discrete (top
right) and the associated Fourier transform is the (continuous time)
Fourier series, or CTFS. Sampling (left column) leads to discrete pe-
riodic signals, or, signals on a discrete circle. The spectrum becomes
periodic (bottom right) and the associated Fourier transform is now
the DFT. In fact, the DFT can be derived this way from the Fourier
series. An associated (known) sampling theorem states which sam-
pled signals can be perfectly reconstructed from their samples.

The first contribution of this paper is to identify the same di-
agram for the DCT (focusing on the best-known DCT type 2 [3],
denoted as DCT-2); the result is shown in Fig. 2 and explained later.
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Fig. 1. Compact continuous and discrete time models (directed),
connected by sampling. This is one way of deriving the DFT.

CSFS

DCT-2

S
am

p
li

n
g

S
am

p
li

n
g

0 I

11

0 1 2

1

0 1 N-1
0 I

N-2

11

0 1 N-1N-2

1

Compact 1D Space Model Spectrum

C
o
n
ti

n
u
o
u
s

D
is

cr
et

e

Fig. 2. Compact continuous and discrete “space” models (undi-
rected), connected by sampling. These can be used to derive the
DCTs and DSTs (only DCT-2 is shown). The details, and the asso-
ciated sampling theorem are provided in this paper.

The second, and main contribution, is the derivation of the associ-
ated sampling theorem including the proper notions of bandlimited
subspace and the equivalent of the sinc function.

There are two additional benefits to this exercise. First, we ob-
tain the continuous structure underlying the discrete DCT. Second,
we derive the DCT not based on the KLT, and without any concepts
from statistical signal processing.

Organization of the paper. In Section 2, we derive the sam-
pling theorem associated with Fig. 1. The corresponding derivation
for Fig. 2 in Section 3 will then be completely analogous. Section 3
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Compact Continuous 1D Time Model

Signal model

I/2
0

Signal symmetry s(kI + t) = s(t), k ∈ Z

Filter symmetry h(kI + t) = h(t), k ∈ Z

Invariant subspaces Sk = {aej 2πk

I
t | a ∈ C}, k ∈ Z

FT (=CTFS) ŝk = c
∫ I

0
s(t)e−j 2πk

I
tdt

Symmetry of FT None

Spectrum visualized
0 1-1

Inverse FT s(t) = 1
cI

∑
k∈Z

ŝkej 2πk

I
t

Frequency response ĥk = c
∫ I

0
h(t)e−j 2πk

I
tdt

Inverse frequency response h(t) = 1
cI

∑
k∈Z

ĥkej 2πk

I
t

Table 1. Essential concepts for the compact continuous 1D time
model. Signals and filters both belong to L1([0, I)). The constant
c �= 0 in the Fourier transform definition can be chosen arbitrarily.

also identifies the proper definitions of signals, filters, and filtering
(convolution) yielding the structures shown in Fig. 2 and thus under-
lie the DCT.

2. SAMPLING THEOREM FOR THE COMPACT 1D TIME
MODEL

To derive the sampling theorem for the 1D compact space model
(Fig. 2), we start with the compact time model (Fig. 1), which, al-
though less well known than the usual infinite 1D time model, is still
intuitive and will thus show how to proceed in the space case. First,
we define the signal space, filter space, and the notion of filtering;
this is what we call a signal model (following [4]).

Continuous compact time model. To precisely explain what
we mean by compact continuous time we define the following (the
most important concepts are summarized in Table 1):

Signal model: We consider continuous periodic L1-signals with
fundamental period in the interval [0, I). Equivalently, the signal
space is S = L1([0, I)), where the interval parameterizes a circle
with circumference I or diameter I/(2π).1 The space of filters H is
alsoL1([0, I)). Filtering is defined as usual on the circle (continuous
circular convolution). The signal space is closed under filtering with
these definitions.

Fourier transform: To find the Fourier transform, one first has to
identify the eigenspaces under filtering. It is well known that these

are spanned by complex exponentials: each Sk = {aej 2πk

I
t | a ∈

C} ≤ S , k ∈ Z, is a simultaneous eigenspace for all filters inH. The
Fourier transform expands a signal as a series in these exponentials;

1We could also choose L2 signals but in the compact case, L1 ⊃ L2.

Compact Discrete 1D Time Model

Signal model

0

1

N-1

Sampling period T = I

N

Sampled signal sT (t) =

N−1∑
n=0

s(nT )δ(t − nT )

FT (=DFT) ŝT,k = c

N−1∑
n=0

s(nT )e−j kn2π

N

Symmetry of FT ŝT,mN+k = ŝT,k

Spectrum visualized 1

1

0

N-1

FT of sinc filter l̂k =

{
cT 0 ≤ k ≤ N − 1,

0 otherwise.

Sinc filter l(t) = 1
N

ejπt
N−1

NT
sin( π

T
t)

sin( π

NT
t)

Bandlim. subspace SBL = {s ∈ S | ŝk = 0, k < 0, k ≥ N}

Basis for SBL b = {l(t − nT ) | 0 ≤ n < N}

Sampling Theorem: For s(t) ∈ SBL,

s(t) =
∑N−1

n=0 s(nT )l(t − nT )

Table 2. Essential concepts for the compact discrete 1D time model
obtained by sampling the model in Table 1.

the coefficients of the series are projections onto the Sk. The Fourier
transform for this case is well known and is called continuous-time
Fourier series (CTFS, see Table 1).

Sampling. The sampling process and the derivation of the sam-
pling theorem can be described using the following steps, which we
will apply later for the model associated with the DCT (the main
concepts are summarized in Table 2):

Sample the signal: We first define the sampling period, T =
I/N , which implies N samples. To place the samples at equispaced
locations on the circle, we can start at any location in the interval
[0, T ); we choose 0. (Different starting points lead to slightly dif-
ferent versions of the DFT below.) Sampling can be described as a
multiplication by a train of Dirac pulses T apart:

sT (t) = s(t)

N−1∑
n=0

δ(t − nT ) =

N−1∑
n=0

s(nT )δ(t − nT ).

We then find the Fourier transform of the sampled signal by applying
the CTFS to get

ŝT,k = c

∫ I

0

sT (t)e−j 2πk

I
tdt = c

N−1∑
n=0

s(nT )e−j kn2π

N , (1)
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where c �= 0 is a normalizing constant that can be chosen arbitrarily.
With c = 1, and denoting WN = ej 2π

N , we recognize the above as
the DFT of a sequence of length N (see Fig. 1).

The above process gives rise to the compact discrete time model
shown in the bottom row of Fig. 1. The signal lives on a circle with
N points (it is discrete periodic with a fundamental period of length
N ) and the shift moves the signal by one sample clockwise. Apply-
ing the shift N times yields the original signal. In the spectrum, the
points denote the N th roots of unity and depict the periodic nature
of the DFT. Note that all four graphs are directed.

Extract the original spectrum using an ideal lowpass filter: From
(1), we see that after sampling the spectrum becomes periodic, that
is, ŝT,mN+k = ŝT,k. Thus, for reconstruction, we need to extract
only one period of it by applying an ideal lowpass filter. In the time
domain, this is equivalent to the convolution of the signal and the
inverse Fourier transform of this lowpass filter. This is the filter with
the cut-off “Nyquist frequency.” We will in general term it as sinc,
as it has to be exactly 1 at t = 0 and 0 at all other sampling points
t = nT , just as the sinc in the infinite continuous case. The exact
form of the sinc is given in Table 2.

Find the space of bandlimited signals: We can then define the
space SBL of those signals bandlimited exactly to the bandwidth of
the sinc (see Table 2). We also define the basis b for the space as the
set of sincs translated by multiples of T (same table).

Sampling theorem. Based on our discussion, the sampling the-
orem can be seen as the expansion of signals belonging to SBL using
the translated sincs l(t−nT ), and it is simply expressed; For a signal
s(t) belonging to SBL:

s(t) =

N−1∑
n=0

s(nT )l(t − nT ).

3. SAMPLING THEOREM FOR THE COMPACT 1D SPACE
MODEL

The question now is: How do we repeat the previous sequence of
steps to get the well-known DCT-2 instead of the DFT? The main
problem is in identifying the underlying continuous model, that is,
the space of signals, space of filters, and the filtering operation. A
summary of the following is in Table 3.

Continuous compact space model. We start by identifying sig-
nal and filter spaces.

Signal model: We consider signals on the interval [0, I], which
are symmetrically extended to the left and to the right:

s(−t) = s(t),
s(I + t) = s(I − t).

(2)

This implies that the signals are 2I-periodic, since s(2I + t) =
s(I + (I + t)) = s(−t) = s(t). The structure produced by these
extensions is not a circle but the one shown in Table 3, under the
heading “Signal model”. It graphically depicts the domain of the
signal. The extensions at the left and right boundaries as in (2),
become loops with weights 1 at t = 0 and t = I , respectively. The
structure can be parameterized by [0, I], yielding the signal space
S = L1([0, I]).

As the filter space, we also choose H = L1([0, I]). We define
filtering (convolution) of s ∈ S with h ∈ H as

(h ∗ s)(τ) =
1

I

∫ I

0

h(t)
1

2
(s(τ − t) + s(τ + t))dt. (3)

Compact Continuous 1D Space Model

Signal model
I

11

0

Signal symmetry s(kI + t) = s(kI − t), k ∈ Z

Filter symmetry h(kI + t) = h(kI − t), k ∈ Z

Invariant subspaces Sk = {a cos( kπ
I

t) | a ∈ C}, k ≥ 0

FT (=CSFS) ŝk = c
∫ I

0
s(t) cos( kπ

I
t)dt

Symmetry of FT ŝ−k = ŝk

Spectrum visualized
0 1 2

1

Inverse FT s(t) = 1
cI

ŝ0 + 2
cI

∑
k≥1

ŝk cos(
kπ

I
t)

Frequency response ĥk = c
∫ I

0
h(t) cos( kπ

I
t)dt

Inverse frequency response h(t) = 1
cI

ĥ0 + 2
cI

∑
k≥1

ĥk cos(
kπ

I
t)

Table 3. Essential concepts for one of four possible compact contin-
uous 1D space models. Signals and filters both belong to L1([0, I]).
The constant c �= 0 in the definition of the Fourier transform can be
chosen arbitrarily.

Direct computation shows that, with this definition, the signal space
is closed under filtering. Since this form of filtering operates sym-
metrically on s(t), we call the model undirected or a space model;
pictorially, the line in the graph does not contain an arrow.

The definition of filtering in (3) is equivalent to taking a sig-
nal and a filter, both symmetrically extended outside [0, I], view-
ing them as 2I-periodic, applying the filtering from the compact
time model (circular convolution), and reducing the (symmetric on
[0, 2I)) result to [0, I].

We can define three other compact space models similarly, by
considering all combinations of symmetric and antisymmetric ex-
tensions to the left and to the right. To obtain the DCT-2, the above
compact model is the right starting point.

Now we proceed as in Section 2; we find the appropriate notion
of Fourier transform.

Fourier transform: The subspaces invariant under filtering are
given by Sk = {a cos( kπ

I
t) | a ∈ C} ≤ S for k ≥ 0. Note that

S−1 = S1; thus the structure of the spectrum shown in Table 3.
This symmetry is pictorially shown as a transition between k = 0
and k = 1 with weight 1 and can be explained as follows: going
to the left from k = 0 would lead us to ŝT,−1, which, since it does
not exist, is redirected to ŝT,1; in other words, ŝT,−1 = ŝT,1. The
Fourier transform expands a signal s(t) ∈ S in a series in the above
cosine functions. Analogously to the CTFS, we call it continuous
space Fourier series (CSFS); it is given in Table 3.

Sampling. By virtue of sampling, we produce a discrete model;
the main concepts we need are summarized in Table 4. We proceed
as in the time case.

Sample the signal: As opposed to the time case, where we could
have started equispaced sampling at any point t ∈ [0, T ), here, the
situation is different; Only the starting points t = 0 and t = T/2
allow equispaced sampling. Any other starting point has a distance
to itself (via the left signal extension) that is not a multiple of T .
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Similarly, we have two choices where to end sampling at the right
boundary, namely at I or I − T/2, for a total of four choices. These
lead to four different versions of the DCT. To get the DCT-2, we have
to sample from T/2 to I −T/2 as we do next. With this choice, and
to obtain N samples, we set again T = I/N . The sampled signal is
then

sT (t) =

N−1∑
n=0

s(nT +
T

2
)δ(t − nT −

T

2
),

while its CSFS is

ŝT,k = c

N−1∑
n=0

s(nT +
T

2
) cos(

k(n + 1
2
)π

N
), (4)

which, with c = 1, is nothing else but the DCT-2. In words, the
DCT-2 is the Fourier transform for a continuous signal given on
[0, I], symmetrically extended to the right and left, and sampled at
the N equispaced points T/2, 3T/2, . . . , (2N − 1)T/2 (with the
notion of filtering as in (3)).

This way of sampling gives rise to a compact discrete space
model in which the signal lives on the discrete structure shown in
Table 4, under the heading “Signal model”. This graph, as opposed
to the signal model graph in Table 2, is undirected as only symmet-
ric filters are available (the discrete counterparts of the continuous
filters in (3)).

Extract the original spectrum using an ideal lowpass filter: The
spectrum of the sampled signal in (4) has the following symmetry
properties: ŝT,−k = ŝT,k on the left, and ŝT,N = 0, ŝT,N+k =
−ŝT,N−k on the right; these yield the spectrum structure shown in
Table 4. For reconstruction, we again need to extract only one “pe-
riod,” that is, the spectrum from 0, . . . , N − 1. The inverse Fourier
transform (that is, the inverse CSFS) of the corresponding ideal low-
pass filter is the sinc for this case:

l(t) =
1

2N

sin( π

T
t)

tan( π

2NT
t)

. (5)

Find the space of bandlimited signals: Similarly to what was
done for the time case, we can define the space SBL of those signals
bandlimited exactly to the bandwidth of the sinc (see Table 4). We
also define the basis b for SBL as the set of those sincs translated by
multiples of T starting at T/2 (same table).

Sampling theorem. The sampling theorem now states that for a
signal s(t) belonging to the bandlimited space spanned by the trans-
lated sincs l(t − nT − T

2
), the signal can be reconstructed from its

samples as:

s(t) =

N−1∑
n=0

s(nT +
T

2
)l(t − nT −

T

2
).

Sampling theorems for all 16 DCTs and DSTs. As mentioned
above, there are four choices of continuous compact space models
and, for each, there are four choices of how to sample. This gives
a total of 16 cases, which yield the 16 known DCTs and DSTs. We
can follow the same “recipe” we presented for the DCT-2. However,
pitfalls abound. For example, for the continuous models which are
antisymmetric at the left boundary, signals are necessarily 0 at t = 0.
Thus, when sampling at points t = nT , one needs to start at t = T .
Also, for the same models, signal and filter space are different, and
thus the Fourier transform of a signal and the frequency response
of a filter are computed differently. This again shows that one has
to be very careful in distinguishing between signals and filters. In
those cases, the sincs we found (which are filters) are not signals

Compact Discrete 1D Space Model

Signal model
0 1 N-1N-2

11

0 I

Sampling period T = I

N

Sampled signal sT (t) =

N−1∑
n=0

s(nT +
T

2
)δ(t − nT −

T

2
)

FT (=DCT-2) ŝT,k = c

N−1∑
n=0

s(nT +
T

2
) cos(

k(n + 1
2
)π

N
)

Symmetry of FT ŝT,mN+k = (−1)mŝT,mN−k

Spectrum visualized
0 1 N-1N-2

1

FT of sinc filter l̂k =

⎧⎪⎨
⎪⎩

cT/2 0 ≤ k ≤ N − 1,

cT/4 k = N,

0 otherwise.

Sinc filter l(t) = 1
2N

sin( π

T
t)

tan( π

2NT
t)

Bandlim. subspace SBL = {s ∈ S | ŝk = 0, k < 0, k ≥ N}

Basis for SBL b = {l(t − nT − T
2
) | 0 ≤ n < N}

Sampling Theorem: For s(t) ∈ SBL,

s(t) =

N−1∑
n=0

s(nT +
T

2
)l(t − nT −

T

2
)

Table 4. Essential concepts for the compact discrete 1D space model
obtained by sampling the continuous model in Table 3 as explained
in the text.

as well. However, their translated versions are and can be used as
basis functions for the bandlimited space. We derived the sampling
theorems for all 16 DCTs and DSTs; however, due to the lack of
space, these will be given in a future paper.
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[5] M. Püschel and J. M. F. Moura, “Algebraic theory of signal
processing: 1-D space,” submitted for publication.

III  360


