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ABSTRACT

In the nonstationary process identification, a time 
varying autoregressive (TVAR) model may possess 
temporal model instability in the conventional direct 
form.  In this study, we propose a new TVAR cascaded 
form to overcome model instability.  The model stability 
in TVAR the cascaded form is accomplished through the
parameterization of time varying poles using pole
tracking and monitoring methods.  Our simulation on 
synthetic data demonstrates that the TVAR cascaded
form stability can easily be achieved, monitored, and
controlled.  The performance evaluation of TVAR
cascaded model has shown that the Cartesian coordinate 
with orthogonal representation performs better than 
other pole representation. 

1. INTRODUCTION 

Most temporal signals such as speech and biomedical
signals have time varying statistics and thus are
nonstationary. Nonstationary signal analysis methods are 
categorized into nonparametric and parametric approaches.
The nonparametric approaches are based on time-dependent
spectral representations that include the short-time Fourier
transform, and the time-frequency distribution [1,2].  The 
parametric approaches are based on time-varying linear
predictive models, such as autoregressive models.  The 
nonstationary process is represented using an autoregressive
model with its parameters changing with time.  It is often
used to track fast time-varying signal dynamics, which is
not possible with nonparametric approaches.  TVAR model
parameters can be estimated using gradient based adaptive
algorithm and basis function methods [3]. The basis
function method assumes that the parameter variations can
be approximated by a linear combination of known basis
functions, which allows relatively fast parameter evolution.
The model parameters can be obtained either by the
blockwise cascaded processing of all the data at one time or
the recursive processing of each datum sequentially.  Power 
time and Legendre polynomials basis function are 
considered in this study [4,5].

Because TVAR models may have temporal instability, the
time-varying poles of the estimated model are not
guaranteed to remain inside the unit circle in the -plane.
The root-finding algorithm factorizes the transfer function
of the TVAR filter in the direct form to solve the current
instability problem.  Because it is computationally
demanding it is practically inappropriate for real time
processing. Moreover, TVAR direct form may not provide
the most convenient information for some applications,
while the poles of the system transfer function usually
contain the physical information of the underlying process
[7,8].  Possible temporal instability in the TVAR direct form
is a major limitation and clipping technique or other
methods [4,6] cannot completely eliminate these limitations
of instability.  These constrains are computationally
expensive due to high nonlinear mapping of these
constraints.  To overcome these issues, we have explored
time-invariant filters in cascaded form and the
parameterization of the time-invariant model in terms of
poles and zeros.  We found that by using cascaded form,
poles and zeros can be estimated directly from the data. 

z

2. TVAR MODEL IN CASCADED FORM 

The nonstationary process can be represented by a TVAR
model [3] (Figure 1) using the following expression:
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Figure 1:  Time-varying AR model in direct form
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Where  are the TVAR model parameters,  is the
model order, is the model output, and  is the input
white Gaussian noise with zero mean and variance .  The 
signal generating system is considered as a linear all-pole
time varying filter with the transfer function in direct form
expressed as follows:
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Where has all the poles within the unit circle on the
-plane to guarantee its stability.  To allow the pole

locations to be readily estimated and constrained, the TVAR
model is formulated in cascaded form (Figure 2).  The time-
varying transfer function  is the product of cascaded
sections as follows:
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The direct form parameters can be calculated through a 
multiple convolution of cascaded form parameters by the 
following equation:

)()}({
2/

1
nPnP k

p

k
Conv  (4) 

Figure 2:  Time-varying AR model in cascaded form.

When each cascaded section consists of a time-varying
conjugate complex pole pair , the transfer 
function denominator in each section becomes:
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In the cascaded process, each pole pair may be represented 
in form of second-order section.  When the time variation of

)(nk  is the time-varying pole in the  cascaded section, 
then it is the linear combination of time functions as
follows:
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Where  is a set of basis functions and 
is a set of basis coefficients.  The second-order section
coefficients are related to each time-varying complex pole 
pair as follows:
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In the Cartesian coordinates the time-varying complex pole
pair can be represented as follows: 
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In polar coordinates, each time-varying complex pole pair is
represented as follows:
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Using the TVAR cascaded form, the time-varying
autoregressive process can be considered as the time-
varying linear prediction in cascaded form (Figure3). The
prediction error )(n  can be expressed in -domain as 
follows [8]:
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Figure 3:  Time-varying linear prediction in cascaded form
),(

1

1 znP
)(nv )(nx),(

1

2 znP ),(
1

2/ znPp

),( znH

The system equations for parameter estimation are obtained
by minimizing the squared prediction error  with

respect to each basis coefficient 
n

n)(2

kj  as: 
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The error gradient component and its corresponding -
domain representation are denoted as follows:
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The gradient component can be calculated from the partial
derivative of prediction error with respect to kj  as follows:
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It can be represented by a linear combination of the input
samples )(),...,1( pnxnx  as: 
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The specific equations pole representations are given as
follows:
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If  is a basis coefficient vector, then the corresponding
error gradient vector can be expressed as:
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The system equations (11) can be written in vector form as: 

n
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Due to the gradient generating process in cascaded form, the 
gradient vector  depends on .  The system equations
for the time-varying autoregressive model in cascaded form
are nonlinear with respect to basis coefficients.  To solve the 
set of nonlinear system equations, the Gauss-Newton
algorithm [11] is used, where the minimization of the
prediction error is obtained by performing searches in the
Newton direction using the error gradient and the inverse of
the estimated Hessian matrix. The coefficient’s estimate is 
updated as follows [12]:
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Where is the step size to control the convergence rate and 

nP
~ is the inverse of the estimated Hessian matrix, updated

using Gauss-Newton algorithm, which is expressed as [13]:
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3. PERFORMANCE EVALUATION

Effective model-based linear prediction, spectral analysis 
and frequency estimations are the goals of investigating
TVAR cascaded model.  Thus, a TVAR quality indicator
average prediction gain can be expressed as: 
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criterion shows the goodness of fit between the predicted
and the true signal.  The expected path of the frequency
estimates is denoted as )](ˆ[)( nfnf to give a general trend
of frequency variation.  In addition, the average estimated
time varying pole trajectories are shown to give a qualitative
view of dynamic system behavior.  Only the single pole pair

case is emphasized in this paper.  For the single pole pair
case, the synthetic data set of length  is generated as 
the output of a second-order all-pole time varying filter with 
the model parameter

256N
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Figures 4 (a) and (b) show the average estimated pole
trajectories of the TVAR model in direct form (blockwise)
and cascaded form (Cartesian coordinate) ( 4q ).  In Figure 
4 (a), the estimated pole trajectory using the direct form
model matches the general trend of the true trajectory, while
some estimated poles leave the unit circle at the end of 
analysis interval due to the estimation error.  In Figure 4 (b),
the estimated pole moves along the true trajectory and
follows the abrupt change.  Because of each basis
coefficients update, all the estimated time varying poles
remain inside the unit circle. 
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Figure 4:  The average estimated pole trajectories of the TVAR
model in direct form and cascaded form

Figure 5: PG  patterns for direct form (blockwise) and 
cascaded form with various basis dimensions ( q 0 to 8).
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Figure 6:  The expected path of frequency estimates )(nf  via
the TVAR modeling in direct form and cascaded form.

Figure 5 compares the PG  with the TVAR in direct form
(blockwise) at three different forms of pole representation in
cascaded form with various basis dimensions ( q 0 to 8). 
The basis dimension ( ) appears to be enough for the
cascaded form to achieve suitable tracking performance,
while the direct form needs a relatively large basis
dimension to obtain good matching performance.  The time
varying pole representation in Cartesian coordinate shows
its superior performance with the

4q

PG  about 1dB higher
than those of other pole representations.  The orthogonality 
between the real and imaginary parts of the Cartesian pole
representation makes it more robust for error estimation.
When there is a small error in one direction, it will have
negligible effect on the other direction, and thus good pole
estimate can still be obtained.  Although the radius and 
angle of the ( ,r ) pole representation are orthogonal, it is
sensitive to deviations of angle when the radius is large. A
small error in the angle estimate may bring the estimated
pole far from its true position.

Figure 6 shows the expected path of the frequency estimate
)(nf  with the TVAR model in direct form (blockwise) and

cascaded form (Cartesian coordinate) with a basis
dimension ( ), where the true frequency trajectory is 
also shown for comparison.   The direct form (blockwise) 
works as frequency matching, with the global optimization
over the whole block of data. The cascaded form
(Cartesian) works as frequency tracking, with the local
approximation adjusted upon each data sequentially.  For an 
abrupt parameter change, the direct form only gives a
smooth approximation while the cascaded form can catch up 
with the new trend with a small overshoot.

4q

4. CONCLUSION 

The TVAR cascaded form is presented in this paper in terms
of time varying pole representations. During identification
process, it is shown that the estimated poles can be easily
constrained in the unit circle, which guarantees the stability
of the model.  This new TVAR cascaded form with pole 
representation offers a robust approximation of time
variations in frequencies and outperforms the conventional
pole representation.
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