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ABSTRACT

In this paper, we propose a discrete characterization of dis-
persive time-varying systems. Based on a unitary warping
relation with the narrowband system model, we formulate
a representation that decomposes the system output as a
weighted superposition of sampled signal transformations
that reflect the dispersive system characteristics. Such dis-
crete representations can be important in designing wave-
forms for transmission through dispersive systems with im-
proved processing performance. We demonstrate the use-
fulness of our proposed model by applying it to a shallow
water acoustic environment characterized by nonlinear fre-
quency dispersions.

1. INTRODUCTION

In nature, there exist many time-varying systems that are
characterized by dispersive signal transformations where dif-
ferent frequencies are shifted in time by different amounts.
For example, in shallow water acoustic environments, the
transmitted waveform undergoes dense multipath delays and
severe modal dispersions as a result of different frequency
components traveling at different group velocities [1]. In
such scenarios, the output signal can be modeled as a super-
position of these transformations, weighted by the disper-
sive spreading function (DSF) [2]. This representation pro-
vides a measure in the time-frequency plane of the spread
that is caused by these (often nonlinear) signal transforma-
tions.

Similar characterization models for narrowband systems
have been discretized to decompose the narrowband spread-
ing function representation into a weighted summation of
sampled time-frequency shifts [3]. This signal-dependent
discrete model has proven useful in many applications; it
has been used to exploit an inherent joint multipath-Doppler
diversity [3] and to eliminate the need for (nonlinear) es-
timation of actual system parameters [4]. Such a discrete
model has not been developed for dispersive systems al-
though it can be important, for example, in designing trans-
mission waveforms to optimize processing performance.
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In this paper, we propose a discrete representation of
dispersive time-varying systems in terms of sampled disper-
sive frequency shifts and generalized time shifts, weighted
by a smoothed discrete version of the DSF. These signal
transformations are specific to the dispersive nature of the
system that is characterized by the nonlinear function ξ(b).
Our discretization model is based on exploiting a unitary
warping relation between narrowband and dispersive sys-
tem characterizations. The approach can be associated with
the transmitted signal’s finite support in transform domains
matched to the dispersion characteristics that depend on ξ(b).
In order to demonstrate the importance of the discrete gen-
eralized model, we consider the dispersive environment for
shallow water acoustic transmission.

The paper is organized as follows. In Section 2, we re-
view the discrete narrowband system characterization. We
then discuss dispersive systems and their warping relation to
narrowband systems in Section 3. In Section 4, we present
our discretization approach with a specific example in Sec-
tion 5.

2. NARROWBAND SYSTEM
CHARACTERIZATION

In this section, we review the discrete representation of nar-
rowband linear time-varying (LTV) systems as it provides
the underlying framework for deriving the discrete repre-
sentation for dispersive systems.

A narrowband LTV systemL can be characterized using
the spreading function (SF). Specifically, the system output
(Lx)(t) can be interpreted as a weighted superposition of
time-frequency shifted versions of the input signal x(t), i.e.,

(Lx)(t) =

�
∞

−∞

�
∞

−∞

SFL(τ, ν)e−jπτν(MνSτx)(t)dνdτ . (1)

The weighting function SFL(τ, ν) quantifies the scattering
strength at time shift τ and frequency shift ν. Here, the
time-shift and frequency-shift operations are defined as (Sτ

x)(t) = x(t−τ) and (Mνx)(t) = x(t) ej2πνt, respectively.
Based on signal time and frequency support constraints,

a discrete form of the narrowband LTV system in (1) can
be obtained in terms of sampled time and frequency shifts.
Specifically, if x(t) is bandlimited to [f0, f1], with band-
width W = f1 − f0, and (Lx)(t) is time-limited to [t0, t1],
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with duration T = t1 − t0, then (1) can be written as [3],

(Lx)(t) =
�
l∈Z

�
k∈Z

�SFL(
l

W
,

k

T
) (M k

T
S l

W
x)(t) (2)

where ŜFL( l
W , k

T ) are two-dimensional (2-D) samples of
the smoothed SF

�SFL(τ, ν) =

�
∞

−∞

�
∞

−∞

SFL(τ̃ , ν̃)e−jπν̃τ̃e−jπ(ν−ν̃)(t0+t1)

· ejπ(τ−τ̃)(f0+f1)sinc((ν − ν̃)T ) sinc((τ − τ̃)W )dν̃dτ̃ , (3)

sampled at the uniform grid τ = l
W and ν = k

T . Here,
sinc(x) = sin(πx)/(πx). Furthermore, if SFL(τ, ν) is non-
zero only when (τ, ν) ∈ [τ0, τ1] × [ν0, ν1], the summation
in (2) can be truncated by choosing1 �τ0W � ≤ l ≤ �τ1W �
and �ν0T � ≤ k ≤ �ν1T �.

3. DISPERSIVE SYSTEM CHARACTERIZATION

3.1. Dispersive Spreading Function

When a signal undergoes dispersive transformations while
propagating through a medium, the SF will not, in general,
be the appropriate analysis tool. To accurately characterize
a dispersive system, it is important to incorporate its disper-
sive characteristics into the system representation.

For a dispersive system Z that modulates the input sig-
nal x(t) with a nonlinear monotonic phase function ξ(t/tr),
leading to a dispersive frequency shift ν(t) = (d/dt)ξ(t/tr),
a dispersive version of the SF was proposed to match the
system dynamics [2]. Here, tr > 0 is a normalization time
reference. Specifically, the DSF can be used to interpret the
system output (Zx)(t) as a weighted superposition of (pos-
sibly) dispersive transformations on x(t), i.e.,

(Zx)(t)=

�
∞

−∞

�
∞

−∞

DSFZ(ζ, β) e−jπζβ(D
(ξ)
β G

(ξ)
ζ x)(t)dζdβ. (4)

These transformations correspond to a dispersive frequency
shift,

(D
(ξ)
β x)(t) = (U−1

ξ Mβ/trUξx)(t) = ej2πβξ(t/tr)x(t) , (5)

and a generalized time shift,

(G
(ξ)
ζ x)(t) = (U−1

ξ StrζUξx)(t) . (6)

The transformation parameters ζ and β are dimensionless.
The time domain unitary warping operator Uξ in (5) and

(6) is defined as,

(Uξx)(t) =
1�

|ξ′(ξ−1( t
tr

))|
x

�
trξ

−1

�
t

tr

��
(7)

and its inverse operator U−1
ξ satisfies (U−1

ξ Uξx)(t) = x(t).
Here, ξ′(b) = (d/db)ξ(b) and ξ−1(ξ(b)) = b.

1Note that �x� (�x�) rounds x to the integer nearest to zero (infinity).

Fig. 1. The warping relation between the dispersive system Z and
the unitary equivalent narrowband system L = UξZU−1

ξ .

Depending on the function ξ(b), the formulation in (4)
can simplify to a specific interpretation. For example, when
ξ(b) = ln b, (4) describes the system output as a weighted
superposition of hyperbolic frequency shifts and scale chang-
es [2]. The latter follows since (6) simplifies to dilation/com-
pression signal transformations. When ξ(b) =

√
b2 − α2

and b � α, then the system in (4) corresponds to a shallow
water acoustic environment causing dispersive frequency shi-
fts in (5) and approximate time shifts in (6) on the transmit-
ted waveform (see Section 5).

3.2. Unitary Warping Relations

Unitary warping methods have played an important role in
matching signal or system dispersive characteristics [2, 5].
Indeed, the DSF can be obtained as the narrowband SF of
the warped system UξZU−1

ξ [2],

DSFZ(ζ, β) = SF
UξZU

−1

ξ

�
trζ,

β

tr

�
. (8)

This warping relation is depicted in Fig. 1, where the input
and output of the dispersive system Z are x(t) and (Zx)(t),
respectively. L = UξZU−1

ξ is a unitary equivalent narrow-
band system [2], for which the input and output are the time
warped signals, (Uξx)(t) and (UξZx)(t), respectively. Fol-
lowing (1), this equivalent narrowband system UξZU−1

ξ can
be characterized by it SF,

(UξZx)(t) =

�
∞

−∞

�
∞

−∞

SF
UξZU

−1

ξ
(τ, ν)e−jπτν

· (MνSτUξx)(t)dνdτ . (9)

3.3. Matched Signal Transforms

As we have seen, the dispersive environment Z is charac-
terized by the change in phase ξ(t/tr) of the transmitted
waveform in (5). The matched signal transform (MST) is
a linear transform that highly localizes signals with phase
ξ(t/tr). For a given ξ(t/tr), the MST of x(t) is defined
as [5]

ℵ(ξ)
x (c) =

�
t∈℘

�
|ξ′(t/tr)|x(t) e

−j2πcξ( t
tr

)
dt , (10)

where c ∈ R and ℘ is the domain of ξ( t
tr

).
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Note that the Fourier transform of the warped signal
(Uξx)(t) in (7) is the MST of x(t) up to an axis scaling,

(FUξx)(f)
�
=

�
∞

−∞

(Uξx)(t) e−j2πftdt = ℵ(ξ)
x (ftr) . (11)

Equation (11) shows that the MST generalizes the Fourier
transform as it is highly localized when analyzing the gen-

eralized chirp g(t) =
√

|ξ′( t
tr

)| ej2πc0ξ( t
tr

), in the same

way that sinusoids are localized by the Fourier transform.
Specifically, ℵ(ξ)

g (c) = δ(c − c0).

4. DISCRETE DISPERSIVE SYSTEM
CHARACTERIZATION

In this section, we propose a discrete DSF representation
based on sampling the dispersive frequency shift and gener-
alized time shift parameters in (5) and (6), respectively. Our
proposed discretization is derived from the existing discrete
SF representation by utilizing the unitary warping relation
between the SF and DSF. The dispersive discrete model can
be useful in many applications. For example, it can facili-
tate waveform design to improve reception performance by
exploiting the inherent diversity in shallow water acoustic
transmissions [6].

4.1. Discrete DSF Representation

We consider a dispersive time-varying system Z with char-
acteristic function ξ(t/tr), input x(t) and output (Zx)(t)

as in (4). We assume that the MST of x(t) in (10), ℵ(ξ)
x (c),

has a bounded support c ∈ [c0, c1], with an effective width
C = c1 − c0. This is a reasonable assumption as the MST is
well-matched to changes in phase by ξ(t/tr). We also as-
sume that the time warped signal (UξZx)(t) has a bounded
support t ∈ [trγ0, trγ1], with a normalized duration Γ =
γ1 − γ0. Then, the output (Zx)(t) in (4) can be decom-
posed as a weighted summation,

(Zx)(t) =
�
l∈Z

�
k∈Z

D̂SFZ(
l

C
,
k

Γ
)(D

(ξ)
k
Γ

G
(ξ)
l
C

x)(t) . (12)

Here, (D(ξ)
k
Γ

G(ξ)
l
C

x)(t) are discrete dispersive frequency and

generalized time shifted versions of the input signal x(t),

and the weighting coefficients D̂SFZ( l
C
, k

Γ ) are 2-D sam-
ples of a smoothed version of the DSF given by

D̂SFZ(ζ, β) =

�
∞

−∞

�
∞

−∞

DSFZ(ζ̃, β̃)e−jπ(β−β̃)(γ0+γ1)

· ejπ(ζ−ζ̃)(c0+c1)sinc((β − β̃)Γ) sinc((ζ − ζ̃)C)dζ̃dβ̃ . (13)

The summations in (12) also admit a finite approxima-
tion due to physical constraints of the dispersive system.
Specifically, if the DSF is nonzero only when (ζ, β) ∈ [ζ0, ζ1]

× [β0, β1], the weighting coefficients D̂SFZ( l
C
, k

Γ ) in (13)

are significantly nonzero only when the smoothing func-
tion’s mainlobe supports, [(l − 1)/C, (l + 1)/C] and [(k −
1)/Γ, (k + 1)/Γ], are effectively overlapped with [ζ0, ζ1]
and [β0, β1], respectively. As a result, the summation limits
are determined as �ζ0C� ≤ l ≤ �ζ1C� and �β0Γ� ≤ k ≤
�β1Γ�.

4.2. Discretization Procedure

In essence, the discretization procedure leading to (12) is a
generalization of the discrete narrowband SF representation
in (2) via the unitary warping relation in (8). The basic idea
is to unwarp the output signal from the warped narrowband
system L = U−1

ξ ZUξ in Fig. 1.

Considering the composite narrowband systemUξZU−1
ξ

in Fig. 1, based on the assumption that x(t) is bounded
in the MST domain and using (11), we conclude that the
input signal (Uξx)(t) is frequency-limited within [ c0

tr
, c1

tr
],

with bandwidth W = C

tr
. Also, we assumed that the time-

warped output signal (UξZx)(t) is time-limited within [trγ0,
trγ1, ], with time duration T = trΓ. Thus, applying the dis-
crete model in (2), we can write (9) as

(UξZx)(t)=
�
l∈Z

�
k∈Z

�SF
UξZU

−1

ξ
(

l

W
,

k

T
)(M k

T
S l

W
Uξx)(t), (14)

where ŜF
UξZU

−1

ξ
( l

W , k
T ) can be determined according to

(3). Using the warping relation (8), we obtain the smoothed
DSF in (13) as,

�SF
UξZU

−1

ξ
(

l

W
,

k

T
) ≡ D̂SFZ(

l

C
,
k

Γ
) . (15)

Replacing (15) in (14), and applying U−1
ξ to both sides,

based on the fact that U−1
ξ is a linear operator, we obtain

(Zx)(t) =
�
l∈Z

�
k∈Z

D̂SFZ(
l

C
,
k

Γ
)
�
U−1

ξ M k
T
S l

W
Uξx
�

(t) .

This is equivalent to (12), because, using (5) and (6), we
have

U−1
ξ M k

T
S l

W
Uξ = (U−1

ξ M k
T
Uξ)(U

−1
ξ S l

W
Uξ)

= D
(ξ)
trk
T

G
(ξ)

l
trW

= D
(ξ)
k
Γ

G
(ξ)
l
C

.

5. SHALLOW WATER ACOUSTIC TRANSMISSION

In shallow water environments, acoustic transmission is sub-
jected to multipath distortion as well as frequency-dependent
group velocity dispersion [1]. In this section, we illustrate
the use of our dispersive system modeling technique in char-
acterizing the shallow water environment.
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5.1. Modal Frequency Dispersion

Due to the interaction between the ocean surface and sed-
iment, the acoustic underwater propagation can be repre-
sented in terms of normal modes [1]. At each mode, differ-
ent frequency components travel at different speeds. As a
result, an impulse signal transmitted at time t = 0 through
the shallow water medium, will arrive at the mth mode asym-
ptotically having a nonlinear time-varying phase [1]

φ(t/tr) = φ(t) = 2πfm(t2 − α2)
1

2 . (16)

Here2, α = R/c, R is the distance between the source
and the receiver, and fm is the cutoff frequency of the mth
mode. The phase in (16) was obtained using the method of
stationary phase assuming t � α [1].

In Fig. 2, the characteristic dispersive instantaneous fre-
quency d

dtφ(t) = fmt/(t2 − α2)1/2 is plotted for the first
6 modes with c = 1500 m/s and R = 30 km. Note that
this dispersive characteristic has been tested by analyzing
experimental data in [7] using time-frequency techniques.
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Fig. 2. Dispersive instantaneous frequency corresponding to the
first 6 modes of φ(t) in (16).

5.2. Discrete Representation

Based on the aforementioned discussion, a shallow water
environment with dense multipath and modal frequency dis-
persions can be characterized using the DSF in (4). Specif-
ically, due to the characteristic phase in (16), the function
ξ(t) in (4) is chosen as ξ(t) = (t2 − α2)1/2, t � α. The
received signal y(t) can be further simplified and decom-
posed into a weighted summation of constant time-shifted
and dispersive frequency-shifted versions of the input sig-
nal x(t),

y(t) ≈
L�

l=1

K�
k=1

Ĥ

�
l

W
,

k

T

�
x

�
t −

l

W

�
ej2π k

T
(t2−α2)

1

2

. (17)

Here, T and W are the time duration and bandwidth of the
warped signal q(t) = t1/2

(t2−α2)1/4
x((t2 − α2)1/2). The sum-

mation limits are L = �TdW � and K = �FmT �, where Td

2Without loss of generality, we assume tr = 1.

is the multipath delay spread and Fm is the cutoff frequency
for the highest mode. The weighting coefficients Ĥ( l

W , k
T )

correspond to the sampled and smoothed DSF of the system
obtained using (13).

An important implication of the model in (17) is the
time-frequency diversity that is inherent to a dispersive time-
varying channel. This is conceptually similar to the nar-
rowband time-frequency model providing joint multipath-
Doppler diversity [3], and to the wideband time-scale model
providing joint multipath-scale diversity [8]. We are cur-
rently investigating waveform design and reception schemes
matched to shallow water dispersion to effectively achieve
diversity gains [6].

6. CONCLUSION

Based on the unitary warping relation between narrowband
and dispersive time-varying systems, we proposed a generic
approach to represent dispersive systems in terms of dis-
crete and (possibly) nonlinear signal transformations that
are weighted by samples of the smoothed DSF. The cor-
responding sampling intervals are related to the signal sup-
ports in matched transform domains. Furthermore, we illus-
trated the use of the model for characterizing shallow water
acoustic environments. This model may be useful, in prac-
tice, for leveraging potential diversity gains in shallow water
acoustic transmissions.
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