
ON SAMPLING METHODS FOR LINEAR SCALE-INVARIANT SYSTEMS

Pierre Borgnat

Laboratoire de Physique (UMR CNRS 5672) ENS Lyon
46 allee d’Italie 69364 Lyon cedex 06, France

ABSTRACT
We study a class of self-similar processes that are not station-
ary, nor have stationary increments. They are called Euler-
Cauchy (EC) processes and are built as output of linear scale-
invariant parametric systems. This article study several dis-
cretization methods of EC processes which are not bandlim-
ited processes: direct sampling, bilinear transformation and
approximation on fractional B-splines. For the three different
methods, we obtain theoretical formulae and compute numer-
ical realizations and properties.

1. SCALE-INVARIANT PROCESSES

Scale invariance, or self-similarity for random processes, is
now a classical property of signals acknowledged as useful to
describe classes of real signals with 1/fβ spectrum. A promi-
nent class rely on stationarity of the signals or their incre-
ments. Such is the case for fractional Gaussian noise, incre-
ments of the celebrated fractional Brownian motions [1], so
that sampling and synthesis is straigthforward. Euler-Cauchy
(EC) processes [2, 3] are output of linear scale-invariant para-
metric systems, in the same way as stationary processes can
be seen as as outputs of linear time-shift invariant filters. EC
processes are self-similar but not stationary, nor do they have
stationary increments.

This road to scale invariance was followed for continuous-
time processes in several works [2, 3, 4, 5, 6], but less atten-
tion has been devoted to their discrete-time formulations. For
such non-stationary self-similar processes, it was proposed to
work with geometric sampling, for synthesis [2, 5], or analy-
sis [7, 8] but this is not convenient for practical and numerical
applications. Another way is to study these systems by means
of the Mellin spectral representation [6]. For all those tech-
niques, a step of interpolation is required and it was never
checked that the methods were stable through interpolation.
Moreover, because those processes are generically not ban-
dlimited, usual Shannon’s sampling is not the best way to for-
mulate the corresponding discrete-time system [9, 10].

This article is devoted to the synthesis of EC processes
and study several discretizations of EC systems. The paper is
organized as follows. Section 2 recalls basic facts about EC
models. Section 3 and 4 derives discrete EC model by clas-
sical analog-to-digital correspondences: impulse invariance

and bilinear transformation. Section 5 proposes a new scheme
based on fractional B-splines that were defined in [11]. The
results are discussed in each section.

2. CONTINOUS-TIME EULER-CAUCHY MODELS

Let us recall that self-similarity, for a Hurst exponent H , is
defined as the statistical identity under dilations. The dilation
operator SH,λ acts on a process as (SH,λX)(t) = λ−HX(λt).
The covariance RX(t, s) of a self-similar process has to sat-
isfy: RX(λt, λs) = λ2HRX(t, s) for any λ ∈ R.

Continuous-time EC(p, q) processes are solutions of
p∑

n=0

αntnDnX(t) =
q∑

m=0

βmtmDmVH(t), (1)

for t > 0 and with VH(t) a non-stationnary Gaussian white
noise of variance E{VH(t)VH(s)} = σ2t2H+1δ(t − s). Here
we write D the continuous-time derivative. Note that if one
considers the time deformation reducing self-similarity to sta-
tionary, called the Lamperti transformation [6], it follows im-
mediately that EC models are, for self-similarity and scale co-
variance, the counterpart of what are usual ARMA models for
stationarity and time-shift covariance. The correspondence is
obtained by mapping t1−HD (operator for self-similarity) to
HI + D under the Lamperti transformation. Our objective is
to study the discrete-time equivalent to tD + αI.

Explicitely, the first order EC model is parametrized as

{tD + (a − H)I}X(t) = VH(t). (2)

Let us introduce the Green function G(t, u) of the model,
defined with initial condition G(u, u) = 1 and satisfying:
tDG(t, u) + (a − H)G(t, u) = δ(t − u). Its expression is,
for t > u,

G(t, u) = (t/u)H−a
, (3)

and an expression of the process follows:

X(t) = G(t, t0)X(t0) +
∫ t

t0

G(t, u)VH(u)
du

u
. (4)

Let us check explicitely that the process is self-similar. The
calculus of the covariance gives

RX(t, s) = G(min(t, s), t0)E
{
X(t0)2

}
+

∫ min(t,s)

t0

(
ts/u2

)H−a
σ2u2H−1du.

(5)
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If the initial condition X(t0) shares the equilibrium distri-
bution of the process (a normal law with variance σ2t2H )
or asymptotically if the system is stable (G(t, t0) −→ 0 if
(t − t0) −→ +∞), then the covariance is not affected by the
initial condition and the process is self-similar. Let λ > 1 and
s = λt, its covariance reads then RX(t, s) = σ2(st)Hλ−a.
The process is self-similar with index H . Its variance growths
as t2H as it is characteristic for self-similarity, and the covari-
ance decreases in a algebraic decorrelation in λ−a.

Generally, EC processes are parametric models of the gen-
eral linear scale-invariant models. They act by means of a
multiplicative convolution [2, 3]. Higher orders models may
be obtained by (multiplicatively) convolving first order EC fil-
ters. We thus mainly study this order in the rest of the article.

3. DIRECT SAMPLING OF EC SYSTEMS

In classical textbook on signal processing one learns about the
impulse-invariant method as a traditionnal Analog-to-Digital
conversion techniques that relies on Shannon’s sampling [9].
A direct time-sampling of the continuous-time solution X(tk)
at time tk = kτ is used. Let us find the statistics of the quanti-
ties obtained for this discrete-time equation that has the form
of a non-stationnary AR(1), xk = akxk−1 + ek. Using eq.
(4), one has

ak = G(kτ, (k − 1)τ); ek =
∫ kτ

(k−1)τ

G(kτ, u)VH(u)
du

u
.

(6)
The first term is given by eq. (3), so that ak = [k/(k−1)]H−a.
As VH(t) is Gaussian with zero mean, so is also the input ek;
as VH(t) is a white noise with variance in t2H+1, ek is also a
white noise and its variance is:

E {ekek} =
σ2(kτ)2H

2(H + a)
(1 − [(k − 1)/k]2a+2H). (7)

For this uniformely sampled process, ak are equivalent, when
k is high enough, to 1− (a−H)/k which varies slowly. Note
that this would be the coefficient for a backward-difference
approximation of eq. (2), by changing D in 1 − B (B is
the backward operator defined so that Bxk = xk−1). On
the whole, it is the non-stationary input ek which drives the
self-similarity of the process, with a variance equivalent to
E {ekek} ∼ σ2τ2Hk2H−1. By combination of the recurrence
equation, the covariance is given (if the system is stable so
that the initial condition is forgotten), if m > k, as rx[m, k] =
(m/k)−a

E|ek|2. Consequently, for l ∈ Z, the covariance
satisfies rx(lm, ln) = l2Hrx(m,n) and the process is wide-
sense self-similar. The behaviour of the random sequence and
its covariance is illustrated on fig. 1.

Let us stress that the input, and not the system, drives the
self-similarity of this signal. The discrete-time system is ac-
counts for the algebraic decorrelation of the process. This is

not entirely satisfactory, because we would like to have a sys-
tem modeling non-stationarity. This will be achieved with a
different A-to-D correspondence.

Note that for higher order, the same calculation is for-
mally possible. For instance, a general expression of a sam-
pled EC(p, 0) is (Pp−2 is a polynomial of order up to p − 2
with time-varying coefficients):

(1−B)pxk +
c1

k
(1−B)p−1xk−1 +

c2

k2
Pp−2(B) = ek. (8)

These discrete models share essentially the same behaviour
as the EC(1): the coefficients are slowly varying with time
and the self-similarity is mainly driven by the input noise.
Another developement is to break the self-similarity by sup-
posing discrete scale invariance (DSI), as in [13]. This is
achieved by taking coefficients a(t) and σ(t) (variance of the
input noise) as periodic functions in log t. The same proce-
dure leads to DSI with a log-periodic function multiplying the
continous Green function that was used before. Hence the dis-
crete coefficient ak will be multiplied by a periodic function
in log k, whereas ek is mostly unaffected. But such kind of
generalization beyond simple scale invariance are minimal in
fact for this discretization scheme: it comes as a small order
pertubation of the mean self-similatity imposed by the noise.
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Fig. 1. Left: snapshot of a discrete EC(1). Right: covariance
rx[n, n0] of the EC(1) for several times n0 (marked by vertical bars)
and variance rx[n, n] (log-log). Averages of 1024 realizations.

4. BILINEAR TRANSFORMATION OF EC SYSTEMS

A second classical technique of A-to-D conversion is the bi-
linear transform that is defined via an invertible rule of cor-
respondence between the Laplace transform (p is the Laplace
variable) and the z transform.

p ←→ 2
τ

1 − z−1

1 + z−1
and z−1 ←→ 1 − pτ/2

1 + pτ/2
. (9)

In the frequency domain, with Ω ∈ R the frequency associ-
ated to continuous time and z = ei2πτω, ω ∈ [−0.5 0.5], the
correspondence reads Ω = f(ω) = 2

τ tan(ωτ/2). It was pro-
posed in [12] to use this transform to define discrete-time di-
lation, then discrete-time scale invariant stationary processes
which are stationary processes. Here we use the transform
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only for A-to-D conversion of the operator; this leads to self-
similar but non-stationary sequences. A kernel representation
of the transform is

X(t) = (Rxn)(t) =
∑∞

n=−∞ P (t, n)xn

P (t, n) =
1
2π

∫ +∞

−∞
exp

{
i(Ωt − f−1(Ω)nτ)

}
dΩ,

xn = (R−1X(t))[n] =
∫ ∞
−∞ s(n, t)X(t)dt

s(n, t) =
1
2π

∫ +1/2

−1/2

exp {i(ωnτ − f(ω)t)}dω.

(10)

Using a stationary phase approximation, it is straightforward
to establish an approximation of the kernels P and s, that are
given as chirps with instantaneous frequency

√
(n/t − 1)/π:

P (t, n)
t<n� 1√

2π
n1/2

t3/4(n−t)1/4 cos (ϕ(n, t)) .

s(n, t)
t<n� 2√

2π
t1/4

n1/2(n−t)1/4 cos (ϕ(n, t)) ,

ϕ(n, t) = 2nacos
(√

t/n
)
− 2

√
t(n − t) − π/4.

(11)

When n is near t, a cut-off by an erf function (that we do not
report here for the sake of simplicity) puts the chirp to zero.
The kernels are drawn on fig 2-a. Any (non necessarily shift-
invariant) linear operator is mapped from continuous time to
discrete time using those kernels. For a linear operator A
with integral representation (A · Y )(t) =

∫
A(t, u)Y (t)dt,

the discrete-time representation is (a ·y)[k] =
∑

k a[k,m]ym

such that A = RaR−1. Then it comes

a[k,m] =
∫ k

0

dt s(k, t)
∫ min(t,m)

0

A(t, u)P (u, m)du.

(12)
The linear kernel for an EC(1), eq. (3), is equal to A(t, u) =
(t/u)H−a/u. The discretized EC(1) is obtained here as a non-
stationary mean-averaged representation. yk is a Gaussian,
nonstationary iid noise that is given by yk =

∫
s(k, t)VH(t)dt.

Its variance scales as E
{
y2

k

} ∝ k1+2H . The kernel a[k,m]
is correctly approximated, if k > m, by kH−ama−H−0.5,
and 0 else; this is represented on fig. 2-b (top). The co-
variance follows immeadiately and it scales as rx[m,n] �
(mn)H(m/n)−a. This scheme gives a process that shares
the properties of the previous one and the realizations of the
process look the same; see fig. 2-c for an illustration.

A main interest of this method of discretization is that one
can use, instead of G(t, u), any multiplicative kernel that is
a function of f(t/u). The method is not restricted to usual
EC systems this allows us to study in the same framework
discrete-time EC sequences of any order, or EC with non-
stationary coefficients. For instance, the sequence shown in
fig. 2-d has f(t) = t−a(1 + b cos(π log(t)) and its kernel
is shown on 2-b (bottom). This function to Discrete Scale
Invariance. Thus this model offers a versatile discrete-time
framework. The price to pay is that an numerical intregration
of eq. (12) is then usually necessary to obtain the kernel. This
is not very efficient for computations of large sequences.
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Fig. 2. Bilinear transformation. Left: a – approximation of eq. (11)
(solid lines) and exact value (dots) for s(50, t) (top) and P (t, 30)
(bottom). b – a[k, m] as function of m for k = 30, 40, . . . , 200
for an EC(1) (top) and a time-varying EC (see text) (bottom).
Right: snapshots (blue dots), variance (red crosses) and covariance
rx[100, n] (solid line in magenta) of random sequences, c – EC(1),
d – EC with DSI kernel. Averages on 1024 realizations.

5. DISCRETE EC MODEL BY FRACTIONAL
B-SPLINE REPRESENTATION

Due to the non-bandlimited property of the continuous scale
invariant signals, generalized sampling, as reviewed in [10],
is an alternative solution for the problem of representation of
a continuous model by a discrete sequence. For discretiza-
tion, cardinal basis defined on a uniform grid are adapted. As
the Green function of EC systems are usually power-laws, a
class of B-splines recently introduced in [11] is relevant to the
problem: the fractional B-splines. After a brief recall of their
properties, a discrete EC model is developped on this basis.

Define the one-sided power functions as (t)α
+ = tα if

t > 0, else 0. A fractional causal B-spline βα
+(t) is defined

by taking the fractional difference operator of the one-sided
power functions. Recalling that Γ(u) =

∫ ∞
0

xu−1e−xdx and(
α
k

)
= Γ(α + 1)/Γ(k + 1)Γ(α − k + 1), we have

βα
+(t) = ∆α+1

+ (t)α
+ =

1
Γ(α + 1)

∑
k≥0

(−1)k

(
α + 1

k

)
(t−k)α

+.

(13)
Fractional B-splines have a Fourier transform in ω−α−1 and
are so good candidates for approximation of self-similar sig-
nals. Any signal X(t) can be approximated in the fractional
spline space of order α as:

Xs.α(t) =
∑
k∈Z

ckβα
+(t − k). (14)

It is known that the reproduction is exact for polynomials up
to order �α	. More generally, the approximation order was
established in [11]. Here the sequence {ck}k∈Z is used as a
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discrete-time representation of the signal. Because of the in-
terpolation property, at knots k, the signal satisfies Xs.α(k) =
X(t)|t=k = xk. Eq.(14) is a convolution; it can be solved
in the Fourier domain, using the inverse filter: 1/βα

+(iω) =
{iω/(1 − e−iω)}α+1.

Let the process be approximated as in eq. (14) with order
α − 1. Fractional B-splines satisfy the induction equation
(Prop. 2.2 in [11]):

αβα
+(t) = tβα−1

+ (t) + (α + 1 − t)βα−1
+ (t − 1). (15)

Using the backward operator, this reads as:

t(1 − B)βα−1
+ (t) + (α + 1)βα−1

+ (t) = αβα
+(t + 1). (16)

Combined with eq. (14) for order α − 1, this leads to

{t(1 − B) + (α + 1)}Xs.(α−1)(t)
=

∑
k∈Z

ck(αβα
+(t − k + 1) − kβα−1

+ (t + k)). (17)

The l.h.s. is taken as the discretized first order EC operator in
the space of representation. Note that for EC systems, one is
interested in tD operator and not in Dα; hence there would
no reason to use the fractional difference ∆α

+ and our choice
appears natural. Comparing with eq. (2), the sequence ck is
obtained by the decomposition of the input white noise VH(t)
on fractional B-spline. Specifically:

VH(t)|t=k = cm ⊗ {αβα
+(m + 1) − mβα−1

+ (m)}[k], (18)

where ⊗ stands for the convolution. Numerically, this equa-
tion is solved in the discrete Fourier domain with a stationary
white random sequence εk because VH(t)|t=k = kH+1/2εk.
The process is then constructed by interpolation, Xs.(α−1)(t) =∑

k∈Z
ckβα−1

+ (t − k). Fig. 3 shows a sample realization, its
variance. The process has a variance that grows in t2H , and
decorrelates algebraically with exponents α + H + 1.

An advantage of this discretization is that the sequence
is synthetised from digital signal processing, with its natu-
ral interpolating function if needed. The procedure is more
quicker than the one from the bilinear transformation. More-
over general tools of signal processing are easily applied to
the sequence by working on ck, according to the rules of gen-
eral sampling. The sequence is obtained by the scheme with
a given time resolution. A perspective would be to use the
two-scale relation satisfied by fractional B-splines [11] could
offer the possibility to refine the details at smaller time-scales,
but this was not studied here. Another development would be
to find a way to include in those models time-varying coeffi-
cients (in order to have DSI for instance) in the framework.

The three means to build discrete-time models for scale
invariant Euler-Cauchy systems studied here are by now com-
plementary depending on the refinements needed. As a final
word, let us remark that an intricate property of these models
is that they have no kind of stationarity. As such the wavelet
methods, that transform a H-ss process with stationary in-
crements in a stationary decomposition at each scale, is not
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Fig. 3. Ec model on fractional B-spline. A snapshot of the pro-
cess with H = 0.8 and α = 0.3, superimposed with its standard
deviation (dots on dashed line, estimated on 1024 realizations; ).

useful to test their scale invariance, because the wavelet coef-
ficients at one scale are nonstationary. That is why we have
preferred here to show scale invariance directly from the co-
variances.
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Proc. Conf. Delft (NL) : Fractals in Engineering. 1999, pp.
301–315, INRIA.

[6] P. Flandrin, P. Borgnat, and P.-O. Amblard, “From station-
arity to self-similarity, and back : Variations on the Lamperti
transformation,” in Processes with Long-Range Correlations:
Theory and Applications, G. Raganjaran and M. Ding, Eds.
June 2003, vol. 621 of Lectures Notes in Physics, pp. 88–117,
Springer-Verlag.
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