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ABSTRACT
When seeking a representation of a signal on a redundant
basis one generally replaces the quest for the sparsest model
by an �1 minimization and solves thus a linear program. In
the presence of noise one has in addition to replace the exact
reconstruction constraint by an approximate one. We con-
sider simultaneously several ways to allow for reconstruc-
tion errors and analyze precisely under which conditions
exact recovery is possible in the absence of noise. These
are then also the conditions that allow recovery in presence
of noise in case of large signal to noise ratio. We illustrate
the results on an example that shows that the chances of re-
covery do indeed depend upon the criterion.

1. INTRODUCTION

We consider the case where a signal can be exactly rep-
resented as a linear combination of a small number of el-
ements from an over-complete set of vectors and analyze
under which conditions this sparse representation can be re-
covered by solving convex programs. So far recovery con-
ditions of an exact sparse model are known in the absence of
noise when a linear program is solved and exact reconstruc-
tion is sought. As soon as additive noise is present, different
criteria have however to be considered and nothing guaran-
tees that recovery is possible under the same conditions even
as the noise power or variance goes to zero.

To specify the results obtained so far let us introduce the
standard setting and notations used in this context. Let A be
a (n,m)-matrix with m > n and columns aj , let b denote the
observed signal, i.e., a vector that admits an exact sparse
representation, say b = Axo. We denote ‖x‖0 the num-
ber of non-zero entries in x and x̄o the reduced dimensional
vector built upon the non-zero components of xo. Similarly
Āo denotes the associated columns in A. We will assume
Āo to be full rank. One then has, e.g., Axo = Āox̄o. We
will also use the notation ¯̄Ao for the remaining columns in
A and thus decompose A as A = [Āo

¯̄Ao].
It has been shown in [1] that xo can be recovered from

the observation of b = Axo by solving the linear program:

minx ‖x‖1 subject to Ax = b , (LP)

where ‖x‖1 =
∑m

1 |xj |, if

‖ ¯̄A
T

o do‖∞ < 1 for some do � ĀT
o do = sign(x̄o) (1)

where sign(x̄o) is the vector of the sign of the components
of the x̄o whose components are all non-zero. It is further
established in [1] that if the columns aj of A are normalized
to one in Euclidean norm, condition (1) is satisfied if

‖xo‖0 <
1
2
(1 +

1
M

) (2)

where M , is the so-called the mutual coherence [2]

M = max
1≤i �=j≤m

|aT
i aj |, (3)

It is this last condition that is more generally known and that
had been obtained using several different proofs [2, 3, 4] but
(2) is of course stronger than (1).

It is worth noting that both (1) and (2) are independent
of the magnitudes of the nonzero entries of xo. Being able
to recover xo appears to be only a matter of structure, of an-
gles between vectors. Now of course if b = Axo + e with
e a vector of additive noise, the magnitudes of the nonze-
ro entries of xo and the amplitudes of the perturbations or,
more generally, the signal to noise ratio come into play.

If b = Axo + e the optimum of (LP), say x∗, will be
generically unique and attained at a basic feasible solution
i.e at a point having n non-zero components. One can then
reasonably expect that if xo satisfies (2) and e is “small”
and smaller than the “smallest” non-zero component in xo,
one might be able to distinguish among the components of
the optimum of (LP) those induced by the noise and those
present in xo.

A more systematic way to get rid of the noise induced
components is however to change the optimization problem
and to allow for reconstruction errors. Instead of asking
for an x that satisfies Ax = b one asks for an x such that
‖Ax− b‖ ≤ ρ where both the norm and the bound ρ remain
to be defined.

We therefore introduce the following problems
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min
x

‖x‖1 subject to ‖Ax − b‖p ≤ ρp (Optp)

with ‖x‖p = (
∑m

1 |xp|p) 1
p , the �p-norm of x. Remember

that in this context dual norms are such that 1
p + 1

q = 1, thus
�1 and �∞ are dual norms while �2 is its own dual. In the ap-
plications we will mainly consider the case p = 1, 2 and∞.

We will analyze what happens when ρp = 0+, a situa-
tion that makes sense when the signal to noise ratio (SNR)
becomes infinite i.e., in the noiseless case. Indeed in order
to recover xo in the presence of noise, one must first be sure
to be in a situation where this is possible in the absence of
noise. Hence the interest of this analysis done in the noise-
less case to get the conditions valid in the noisy case.

2. PROBLEM FORMULATION

2.1. Previous results

Since the optimum of (Optp) is a function of ρp, it is cer-
tainly distinct from xo, hence the necessity to define what
is meant by recovery of xo in this context. We will say that
(Optp), allows to recover xo if the optimal solution of (Optp)
has the same number of non-zero components as xo at the
same locations and with the same signs. Note that since
the discrepancy between xo and this optimum generally in-
creases with ρp, the size of the the interval, say [0, ρmax

p [,
over which recovery is possible depends on the magnitudes
of the non-zero components of xo.

Results are indeed available for p=q=2. It is shown in
[1] that (Opt2) allows to recover xo for ρ2 small enough
when

‖ ¯̄A
T

o d2‖∞ < 1 for d2 = Ā+T
o sign(x̄o) (4)

where Ā+T
o is the transpose of the pseudo-inverse of Āo. In

[1], it is shown that though this condition is stronger than
(1), it leads to the same sparsity condition (2) as (1). In
Section 3, we give an example of a signal that satisfies (1)
but not (4), i.e., whose representation can be recovered by
(LP) but not by (Opt2).

More recent results concerning recovery conditions in
the presence of noise when (Opt2) is used have been pub-
lished in [6, 8, 7, 9]

2.2. Optimality conditions

In order to be able to characterize easily the conditions satis-
fied by the optimum of (Optp), we introduce ∂f(x) the sub-
differential of a convex function f at a point x, it is a set of
vectors called the sub-gradients of f at x. For f(x) = ‖x‖p

one has [10]

∂ ‖x‖p = {u|uT x = ‖x‖p, ‖u‖q ≤ 1} (5)

From the above relation, it follows that

∂ ‖x‖1 = {u| ui = sign(xi) if xi �= 0 and |ui| ≤ 1 else}
∂ ‖x‖2 = x/‖x‖2

∂ ‖x‖∞ = {u| |xi| = ‖x‖∞ ⇒ xiui ≥ 0, |xi| < ‖x‖∞
⇒ ui = 0, ‖u‖1 = 1 if x �= 0, ‖u‖1 ≤ 1 else}

where xi is the i-th component of x. Note that if f is differ-
entiable at x then ∂f(x) reduces to the gradient.

Before we proceed let us note that (Optp) is a convex
program for p≥1 and that it admits thus a dual problem
(DOptp) that is convex also. To characterize the optimal-
ity conditions of (Optp) we introduce the dual programs.

Lemma 1. The dual of the convex program (Optp) is

max
d

bT d−ρp‖d‖q s.t. ‖AT d‖∞ ≤ 1 (DOptp) �

Proof: We first rewrite (Optp) as

min
x, c

‖x‖1 subject to ‖c‖p ≤ ρp and Ax − b = c

the Lagrangian of this problem is then

�(x, c, λ, d) = ‖x‖1+λ(‖c‖p−ρp)−dT (Ax−b−c), λ ≥ 0
and defining φ(λ, d) = minx, c �(x, c, λ, d), the dual prob-
lem is maxλ≥0, d φ(λ, d).

In order to evaluate φ(λ, d), we first take the minimum
with respect to x. This minimum may not be finite for all d
but since we later take the maximum in d theses cases can
be ignored. The minimum is finite if and only if AT d = u
for some u ∈ ∂‖x‖1. From (5), it follows that such a point
exists only if ‖AT d‖∞≤1 and the contribution of the terms
in x to � is then zero.

Similarly, the minimum in c may not be finite for all d.
It is finite if and only if λv + d = 0 for some v ∈ ∂‖c‖p.
Such a point exists only if ‖d‖q ≤ λ and the contribution of
the terms in c to � is then zero. The dual problem is thus

max
λ≥0, d

dT b − λρp subject to ‖AT d‖∞ ≤ 1, ‖d‖q ≤ λ

and taking the maximum with respect to λ ≥ 0 leads to the
announced result. �

The necessary and sufficient conditions for optimality
of convex programs admit simple forms when one consid-
ers both the primal and the dual and one has

Theorem 1. The optima of (Optp) and (DOptp) are re-
spectively x and d if and only

Ax − b = −ρpv and AT d = u (6)

for some u ∈ ∂‖x‖1 and v ∈ ∂‖d‖q �

Proof: The proof is immediate. Both points x and d are
feasible and lead to identical costs in both problems. �
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These conditions are of course identical to the optimali-
ty conditions of the primal (Optp), we introduced them be-
cause they are in a form that is more favorable to our pur-
pose. It is instructive to check it. Since the primal is convex,
the first order necessary optimality conditions are also suf-
ficient. The Lagrangian of the primal is

�(x, µ) = ‖x‖1 + µ(‖Ax − b‖p − ρp), µ ≥ 0

and the optimality conditions are thus

u′+µAT w = 0, with u′ ∈ ∂‖x‖1, w ∈ ∂‖Ax−b‖p, µ ≥ 0

To make the link between both conditions note that from
(5) it follows that ‖w‖q ≤ 1 and wT (Ax − b) = ρp. Then
take u′ = u, w = −d/‖d‖q and µ = ‖d‖q to transform one
set into the other.

Note that due to the presence of u and v the two rela-
tions in (6) are far from defining the optimal x and d that
can only be obtained by an iterative procedure. They never-
theless carry enough information to be helpful in our case,
i.e., when we are interested in conditions under which the s-
parse representation xo can be recovered from the optimum
of (Optp). One expects this to be possible for sufficiently
small ρp.

As in Section 1, we decompose xo into x̄o the non-zero
components and ¯̄xo = 0. This decomposition of xo induces
a decomposition of A into Āo and ¯̄Ao to yield for instance
Axo = Āox̄o. We now establish the following recovery
conditions

Theorem 2. The solution xo of Ax = b with b =
Axo = Āox̄o and Āo a full-rank matrix, can be recovered
from the unique optimum point x(ρp) of (Optp), for ρp suf-
ficiently small, if there exists

dp = arg min
d

‖d‖q s.t. ĀT
o d = sign(x̄o)

that satisfies ‖ ¯̄A
T

o dp‖∞ < 1 � (7)

Proof. We show that if (7) holds it is possible, for ρp

sufficiently small, to build a quadruple x, u, d, v that sat-
isfies (6), with x the optimum of (Optp) that satisfies in
addition the recovery requirements. These recovery con-
ditions impose conditions on u ∈ ∂‖x‖1: it has to be such
that ū =sign(xo) and ‖¯̄u‖∞<1. With the notations defined
above we shall prove that x(ρp) = xo − ρpz with moreover
x̄(ρp) = x̄o − ρ − pz̄.

If there is a vector dp that satisfies (7), this same dp is
an optimum of

min
d

‖d‖q s.t. ĀT
o d = sign(x̄o) and ‖ ¯̄A

T

o d‖∞ ≤ 1. (8)

The dual of this optimization problem is

max
z

sign(x̄o)z̄ − ‖¯̄z‖1 s.t. ‖Āoz̄ + ¯̄Ao¯̄z‖p ≤ 1 (9)

where we have partitioned the vector of variables z as z =
[z̄T ¯̄zT ]T . Where this partition is xo-induced, but is coher-
ent a posteriori since we will show that z and xo have their
zero and non-zero components at the same locations.

The Lagrange dual (9) of (8) is obtained applying the
same technique we used to prove lemma 1 and we do not
detail the proof.

First one observes that with the optimum dp of (8) that
satisfies (7) is associated an optimum of the dual, say zp,
that is such that ¯̄zp = 0 because the second set of constraints
in the primal are strictly satisfied. This follows from the fact
that the dual variables are the Lagrange multipliers associ-
ated with the constraints of the primal.

Using dp and zp that satisfy the constraints and lead to
identical costs in (8,9), we build x, d and their associated
sub-gradients that satisfy (6).

We propose to take d in (6) equal to dp and define u as
u = AT dp. From the constraints in (8) and (6), it follows
that u is such that ū = sign(x̄o) and ‖¯̄u‖∞ < 1 which are
the properties required for a sub-gradient of ‖x(ρ∞)‖1.

We further propose to take x = x(ρp) = xo − ρpz
p for

which, since ¯̄zp = 0, it holds that the nonzero components
are at the same locations, i.e., x̄(ρp) = x̄o−ρpz̄

p. Moreover
for ρp small enough x(ρp) and xo have the same signs.

Premultiplying x(ρp) = xo−ρpz
p by A we get Ax(ρp) =

Axo − ρpAzp = b − ρpv with v = Azp = Āoz̄
p which has

the desired properties also for a sub-gradient in ∂‖d‖q. �

We are reached our goal, we have obtained the condi-
tions (7) under which xo can be recovered from the solution
of (Optp).

These conditions are known [1] for p=q=2. In that case
the optimization problem in (7) has moreover an explicit
solution: d2 = Ā+T

o sign(x̄o) and (7) becomes (4). Since
∂‖d‖2 = d/‖d‖2, one can combine the different pieces to
obtain

x̄(h) = x̄o − h(ĀoĀo)−1sign(x̄o) with h = ρ2/‖d2‖2

a known results [1] which of course only holds if d2 satisfies
(4) and h is taken small enough i.e. such that sign(x̄(h)) =
sign(x̄o). Note that the case p=q=2 seems to be the only one
for which the solution of (7) has an explicit expression.

3. AN ILLUSTRATIVE EXAMPLE

We now present a simple example that allows to illustrate
the results obtained above. The number of observations is
n = 3 and m the number of columns in A is left open,
i.e. we only detail the two columns in Āo that are used to
build b = Ax = Āox̄o and an additional column a3 tuned
to illustrate our purpose. We take these columns normed to
one in the �2-norm though this is not required to use (4). We
take
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A =

⎡
⎣

1 0 a ..
0 1 b ..
0 0 c ..

⎤
⎦ xo =

⎡
⎢⎢⎣

1
1
0
..

⎤
⎥⎥⎦, b =

⎡
⎣

1
1
0

⎤
⎦.

with a2 + b2 + c2 = 1. In order to decide if (Opt2) allows to
recover xo we compute d2 in (4) and get d2 = [1 1 0]T , this
implies, see (4), that (Opt2) will allow to recover xo only if
|aT

j d2| < 1 for j ≥ 3.
To fix ideas, we take from now on m = 3 and a = b =

2/3 and c = 1/3 in the sequel. The full model is now:

A =

⎡
⎣

1 0 2/3
0 1 2/3
0 0 1/3

⎤
⎦, xo =

⎡
⎣

1
1
0

⎤
⎦, b =

⎡
⎣

1
1
0

⎤
⎦. (E)

From above we know that (Opt2) does not allow to re-
cover xo in this example.

Before we proceed, we note that since for instance the
vector do = [ 1 1 1]T satisfies (1), the optimum of the lin-
ear program (LP) is xo, i.e., (E) is an example where (LP)
allows to recover xo while (Opt2) does not.

We now consider the optimum of (Opt1) and (Opt∞), to
do so we seek the optimum of (7)

For p = ∞, one solves (Opt∞)

min
x

‖x‖1 subject to ‖Ax − b‖∞ ≤ ρ∞

and to check if it is possible to recover xo from its optimum,
one has to get the solution of

min ‖d‖1 subject to ĀT
o d = sign(x̄o)

we denote d∞. For the scenario in (E), d∞ = [ 1 1 0]T and
since |aT

3 d∞| > 1, (Opt∞) does not allow to recover xo.
For p = 1, one solves (Opt1)

min
x

‖x‖1 subject to ‖Ax − b‖1 ≤ ρ1

and to check if it is possible to recover xo from its optimum,
one has to get the solution of

min ‖d‖∞ subject to ĀT
o d = sign(x̄o)

we denote d1. For the scenario in (E), d1 = [ 1 1 d3]T

with d3 any real in [−1, 1] and taking for instance d1 =
[ 1 1 − 1]T , one has |aT

3 d∞| < 1, which tells us that (Opt1)
allows to recover xo.

In summary for example (E), both (LP) and (Opt1) al-
low to recover xo, while xo cannot be recovered from the
optimum of (Opt2) and (Opt∞).

From the results developed in Section 2, one can quite
easily deduce the following expressions of the optimum of
(Optp) as a function ρp. For p=1, 2 and ∞, one has respec-
tively

x(ρ1) =

⎡
⎣

1
1
0

⎤
⎦ − ρ1

2

⎡
⎣

1
1
0

⎤
⎦ =

⎡
⎣

1 − ρ1/2
1 − ρ1/2

0

⎤
⎦

x(ρ2) =

⎡
⎣

1
1
0

⎤
⎦ − ρ2√

3

⎡
⎣

3
3
−3

⎤
⎦ =

⎡
⎣

1 −√
3 ρ2

1 −√
3 ρ2√

3 ρ2

⎤
⎦

x(ρ∞) =

⎡
⎣

1
1
0

⎤
⎦ − ρ∞

⎡
⎣

3
3
−3

⎤
⎦ =

⎡
⎣

1 − 3 ρ∞
1 − 3 ρ∞

3 ρ∞

⎤
⎦

They confirm that only (Opt1) allows to recover xo for
small enough ρ1. For example (E), ρ1 has to be smaller than
2 since this is the smallest value of ρ1 for which at least one
of the components in x(ρ1) becomes zero.

4. CONCLUSIONS AND PERSPECTIVES

We have extended the recovery conditions which were known
in the absence of noise for the optimization problem (LP)
and in the presence of noise for the optimization problem
(Opt2) to any optimization problem of the form (Optp) with
p≥1. This class of convex programs allows to handle ad-
ditive noise and though the analysis was performed in the
noise-free case, it allows to draw conclusions in the noisy
case. We considered mainly the 3 values p=1, 2 and ∞.

The conditions (7) we obtained are presented in Theo-
rem 2. It is only in the case p=2, that these conditions have
been so far translated in terms of sparsity (2) of the exact
model.
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