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ABSTRACT

In this paper we present a novel optimization method for on-line
maximum likelihood estimation (MLE) of the static parameters of
a general state space model. Our approach is based on viewing the
particle filter as a controlled Markov chain, where the control is the
unknown static parameters to be identified. The algorithm relies on
the computation of the gradient of the particle filter using a score
function approach.

1. INTRODUCTION

Despite the advent of Sequential Monte Carlo (SMC) filtering meth-
ods (aka particle filters), SMC based parameter estimation remains
a challenging problem. The majority of the methods found in the
literature augment the state to include the unknown static parameter
and cast the problem as a filtering one [5], [10], [13]. These meth-
ods have their drawbacks [1]. Our approach is to solve the parame-
ter estimation problem as a Recursive Maximum Likelihood (RML)
problem. RML is well known but hitherto has been limited to fi-
nite state space models [8]. Recently, extensions to the general state
space case have been proposed [3], [12], [1]. In [3] and [12], the
authors solve the problem by directly approximating the derivative
of the optimal filter, which is needed for their RML implementation,
using SMC. In [1], novel on-line Expectation Maximization algo-
rithms have been presented. The approach adopted in this paper is
to view the particle filter as a controlled Markov chain. We define a
suitable “average reward” performance criterion and optimize it. The
control parameters of the Markov chain correspond to the unknown
static parameters of the hidden Markov model to be identified. The
approach we propose is an on-line method and we demonstrate good
performance in several examples.

1.1. The State-Space Model

Let the hidden state process {Xn}n≥0 and the observation process
{Yn}n≥0 be R

nx and R
ny -valued stochastic processes defined on

a measurable space (Ω,F). Let θ ∈ Θ be the parameter vector
where Θ is an open subset of R

m. A general discrete-time state-
space model represents the unobserved state {Xn}n≥0 as a Markov
process of initial density X0 ∼ µ and transition density fθ(xn|xn−1).
The process {Xn}n≥0 is unknown but is partially observed through
the observation process {Yn}n≥0. The observations {Yn}n≥0 are
assumed conditionally independent given {Xn}n≥0 and admit a mar-
ginal density gθ(yn|xn).

Consider for the time being a fixed parameter θ. We are in-
terested in the so-called optimal filter that is defined as the posterior
density of Xn given the observation set Y0:n, denoted by pθ(xn|Y0:n)1.

1For any sequence {zk} and random process {Zk} we will use the nota-
tion zi:j = (zi, zi+1, ..., zj) and Zi:j = (Zi, Zi+1, ..., Zj).

Introducing a proposal distribution qθ (xn|Yn, xn − 1), which is
needed for the SMC implementation below, the filtering density sat-
isfies the recursion [4]

pθ (xn|Y0:n) ∝�
αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1) pθ (xn−1|Y0:n−1) dxn−1

(1)

where αθ (xn−1:n, Yn) =
gθ (Yn|xn) fθ (xn|xn−1)

qθ (xn|Yn, xn−1)
. (2)

Note that the support of qθ (xn|Yn, xn − 1) should include that of
gθ (Yn|xn) fθ (xn|xn − 1). In general, (1) has no closed-form ex-
pression and particle methods are typically used to approximate it.

1.2. The SMC framework

The SMC method we will consider here approximates the optimal
filtering density pθ (xn−1|Y0:n−1) by an set of N � 1 particles, i.e.

X
(1:N)
n−1 �

�
X

(1)
n−1, . . . , X

(N)
n−1

�
having equal weights. The filtering

distribution at the next time step can be recursively approximated by
a new set of particles X

(1:N)
n generated via an importance sampling

and a resampling step.
In the importance sampling step, a set of prediction particles�X(1:N)

n are generated independently using the proposal distribution
introduced in (1),

�X(1:N)
n ∼ Qθ

��x(1:N)
n | Yn, X

(1:N)
n−1

�
=

N�
i=1

qθ

��x(i)
n | X(i)

n−1, Yn

�

The ith prediction particle is weighted by an importance weight �a(i)
θ,n

that corrects for the discrepancy with the “target” distribution. This
is given by

a
(i)
θ,n = αθ

� �X(i)
n , X

(i)
n−1, Yn

�
, �a(i)

θ,n =
a
(i)
θ,n�N

j=1 a
(j)
θ,n

. (3)

Note that the weight vector is a deterministic function of its argu-
ments and will be denoted by

�a(1:N)
θ,n = Φθ

�
Yn−1, �X(1:N)

n−1 , X
(1:N)
n−2

�
. (4)

In the resampling step, the particles �X(1:N)
n are multiplied or elimi-

nated according to their importance weights �a(1:N)
θ,n to give the new

set of particles X
(1:N)
n , based on the mapping

X
(1:N)
n = H

� �X(1:N)
n , I

(1:N)
n

�

� [ �X(1)
n , . . . , �X(1)

n� 	
 �
I
(1)
n times

, . . . , �X(N)
n , . . . , �X(N)

n� 	
 �
I
(N)
n times

] (5)
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where I
(i)
n represents the number of copies of particle �X(i)

n . The re-

sampling index vector I
(1:N)
n �

�
I
(1)
n , . . . , I

(N)
n

�
∼ L

�
· | �a(1:N)

θ,n−1

�
is obtained using multinomial resampling, which is smooth and hence
differentiable in the weights2.

If we assume that at time n−1 a set of equally weighted particles�X(1:N)
n−1 =

� �X(1)
n−1, . . . ,

�X(N)
n−1

�
is available, the full algorithm is

summarized as follows:

Generic Sequential Monte Carlo algorithm (SIR)
Weighted resampling step

• Evaluate the importance weights �a(i)
θ,n−1 using (3).

• Sample the resampling index vector I
(1:N)
n−1 ∼ L

�
· | �a(1:N)

θ,n−1

�
.

• Set X
(1:N)
n−1 = H

� �X(1:N)
n−1 , I

(1:N)
n−1

�
.

Importance sampling step

• For i = 1, ..., N , sample �X(i)
n ∼ qθ

�
· | Yn, X

(i)
n−1

�
.

2. PROBLEM FORMULATION

In a general state space model, the system evolves according to a
true but unknown static parameter θ∗, i.e.

Xn|Xn−1 = xn−1 ∼ fθ∗( . |xn−1) (6)

Yn|Xn = xn ∼ gθ∗( . |xn). (7)

The aim is to identify θ∗ based on an infinite (or very large) obser-
vation sequence {Yn}n≥0, in an on-line fashion. Identification of
θ∗ can be achieved by maximizing, with respect to θ, the average
log-likelihood function (see for example [9])

l (θ) = lim
k→∞

1

k + 1

k�
n=0

log pθ(Yn |Y0:n−1 ). (8)

It can be shown that under suitable regularity conditions described
in [14], this limit exists and l (θ) admits θ∗ as a global maximum.
The expression pθ(Yn |Y0:n−1 ) can be written as

pθ(Yn |Y0:n−1 ) =
� �

αθ (xn−1:n, Yn) qθ (xn|Yn, xn−1)
×pθ (xn−1|Y0:n−1) dxn−1dxn

(9)
and in general does not admit a closed form solution. However, it
can be approximated numerically using the SMC algorithm of sec-
tion 1.2. We propose here to maximize the alternative criterion that
results from using a particle approximation for the likelihood in (8),
i.e.

J (θ) = lim
k→∞

1

k + 1

k�
n=0

log �pθ(Yn |Y1:n−1 ). (10)

As detailed below, this approach amounts to treating the particle fil-
ter as a controlled Markov chain which is to be optimized.

2.1. Solution methodology

The general approach we will consider is based on the literature of
controlled Markov chains [11]. Consider a Markov chain {Zn}n≥0,
taking values in Rnz , whose transition density pθ is parameterized
by a tunable or control parameter θ ∈ Θ. We are interested in maxi-
mizing performance measures of the form J (θ) =

�
ϕθ(z)λθ(z)dz

2Differentiability is essential for the development of the algorithm. Re-
sampling schemes that are not continuous w.r.t. the weight vector (e.g. resid-
ual and systematic) can still be used with appropriate smoothing.

w.r.t. θ, where ϕθ is some real valued function defined on Rnz and
λθ is the unique invariant distribution of the Markov chain. In most
cases, λθ(z) is not known and J(θ) must be optimized based on
knowledge of the transition density only. Ergodicity of {Zn}n≥0

is thus important. Specifically, the instantaneous expectation of the
chain given by

Jn(θ) � Eθ {ϕθ(Zn)} =

�
ϕθ(zn)pθ(zn |zn−1 ) . . .

× pθ(z1 |z0 )p (z0) dz0:n (11)

converges under suitable ergodicity assumptions to the stationary
performance measure, i.e. limn→∞ Jn(θ) = J (θ). One way to
exploit this in order to maximize J (θ) is to use a Stochastic Ap-
proximation (SA) algorithm that updates the parameter value at time
n according to the recursion

θn = θn−1 + γn
	∇Jn(θn−1). (12)

Here θn−1 is the parameter estimate at time n− 1 and	∇Jn denotes
an estimate of ∇Jn, preferably unbiased. Under suitable conditions
on the step size, θn will converge to ϑ∗ = arg max

θ∈Θ
J (θ) (or to the

set of maximizers in the case it is not unique).
In order to obtain unbiased estimates of ∇Jn(θ), we will use the

score function method, which is also known as the likelihood ratio
[6]. The gradient of (11), applying the chain rule, is

∇Jn(θ) = E {(∇ϕθ) (Zn) + ϕθ(Zn)Sn(θ)} ,

where
Sn(θ) =

n�
m=1

∇pθ(Zm |Zm−1 )

pθ(Zm |Zm−1 )
(13)

is the score function. This leads to the following unbiased gradient
estimate 	∇Jn(θ) = ∇ϕθ(Zn) + ϕθ(Zn)Sn(θ). (14)

Note that the algorithm requires only a single realization or sample
path of the Markov chain.

3. PARAMETER ESTIMATION OF SMC

We use the above ideas in the context of parameter estimation of
SMC systems by defining an augmented system comprising of the
hidden state, its observation and the particle filter, i.e.

Zn = (Xn, Yn, �pn),

where �pn =
� �X(1:N)

n , X
(1:N)
n−1

�
is an approximation to the joint pre-

diction density qθ (xn|Yn, xn−1) pθ (xn−1|Y1:n−1). A related ap-
proach was used in [2] to optimize the performance of SMC algo-
rithms. It can be easily verified that Zn satisfies the Markov prop-
erty, since �pn is a random function of �pn−1 and Yn−1:n only. Under
some stability conditions, it can be further shown that Zn is an er-
godic Markov chain for each θ [14]. The performance criterion (10)
is now given by3

J (θ) �

��
R

ny ×P(Rnx)

ϕθ (y, �pn) λθ,θ∗ (y, �pn) dy d�pn (15)

where P (Rnx) is the space of probability distributions on R
nx and

λθ,θ∗ (·) is the invariant distribution of the observation process Yn

and the predictive particle filter �pn. Note that the invariant distribu-
tion λθ,θ∗ depends on the true parameter θ∗ as well, because of the

3Note that the first component of Zn is the unknown hidden state Xn of
the true system. Therefore, we essentially consider cost functions ϕθ (·) that
do not depend on Xn.
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hidden state and observation pair (Xn, Yn). For maximum likeli-
hood estimation we set the cost function to be

ϕθ(Zn) = log

�
1

N

N�
i=1

αθ

�
X

(i)
n−1,

�X(i)
n , Yn

��
. (16)

Note that this is precisely the particle approximation
log �pθ(Yn |Y1:n−1 ) in (10).

Following the arguments in section 2.1, the solution of

ϑ
∗ = arg max

θ∈Θ
J (θ) (17)

can be obtained through the SA recursion in (12) that requires an
unbiased estimate of ∇Jn. Before we calculate this, it is important
to realize that in a general state space model, the evolution of Xn

and Yn are governed by the true parameter θ∗ that we wish to iden-
tify, while the particle filter component of Zn evolves according to
a θ-dependent transition. Specifically, the transition density of the
Markov chain Zn = (Xn, Yn, �pn) is

Xn, Yn, �pn|Xn−1, Yn−1, �pn−1 ∼

pθ(�pn |�pn−1, Yn, Yn−1 )gθ∗(Yn |Xn )fθ∗(Xn |Xn−1 ).
(18)

Using the deterministic mappings in (4) and (5) it can be easily
shown that pθ(�pn |�pn−1, Yn, Yn−1 ) is equal to

pθ( �X(1:N)
n , X

(1:N)
n−1

��� �X(1:N)
n−1 , X

(1:N)
n−2 , Yn, Yn−1 ) =

Qθ

� �X(1:N)
n

���X(1:N)
n−1 , Yn

�
L
�
I
(1:N)
n−1 |�a(1:N)

θ,n−1

�
.

(19)
Sampling from (19) is equivalent to running the generic SMC algo-
rithm from time n − 1 to n. Equation (19) implies that the score
estimate in (13) specifies to

n�
m=0

�	∇θQθ

� �X(1:N)
m |X(1:N)

m−1 , Ym

�
Qθ

� �X(1:N)
m |X(1:N)

m−1 , Ym

� +
∇θL

�
I
(1:N)
m−1 |�a(1:N)

θ,m−1

�
L
�
I
(1:N)
m−1 |�a(1:N)

θ,m−1

�

�

(20)
Note that because we only use a finite number N of particles, �pn

is only an approximation to the exact density pθ (xn−1|Y1:n−1)
×qθ (xn|Yn, xn−1). Hence the maximizing value ϑ∗ in (17) will
not be exactly equal to the true parameter θ∗. In principle, as N in-
creases, J (θ) will get closer to l (θ) and ϑ∗ will converge to θ∗. Our
simulation results indicate that ϑ∗ provides a good approximation to
θ∗ for a moderate number of particles.

3.1. Variance reduction methods

Unlike the standard applications in the literature, we are dealing with
a controlled Markov chain of a high dimension, because of the par-
ticle filter component of the state. This necessitates variance reduc-
tions methods for the gradient estimate. The score estimate Sn (θ)

and consequently the gradient estimate �∇Jn(θ) suffer from very
large estimation variance that increases with time and the number
of particles N . We therefore consider a number of variance reduc-
tion techniques:

1. Parallel Filters
The excessive variance of the gradient estimate is prohibitive for
practical parameter estimation method within a reasonable number
of iterations. We address this limitation by using P parallel particle
filters. This effectively gives P independent draws from (19) that
can be combined into an averaged unbiased estimate ∇Jn(θn−1) =

1
P

P

j=1
�∇Jn,j(θn−1). Note that in practice this also allows a lower

number of particles to be used per particle filter. This approach can
be viewed as having a single particle filter with N × P particles,
where the particles are resampled within each of the P blocks and
the blocks are not interacting.

2. Discount factor
The variance of the score function typically grows with time. We
limit this variance increase at a cost of introducing some bias by
using a discount factor � ∈ [0, 1) in the score iteration. For the
values of � used in our simulations, the bias was negligible.

3. Optimal Control Variate
Using the fact that Eθ [Sn (θ)] = 0, we can achieve further vari-
ance reduction by considering a new estimate�∇Jn(θ) = �∇Jn(θ)−
bSn(θ) for a suitable constant b. Subtracting bSn(θ) does not add
any bias but reduces the variance provided b is chosen properly. The
optimal value for b, denoted b∗, is the solution of a quadratic cost
function, namely the variance of �∇Jn(θ), and can itself be solved
for using a second SA algorithm. This leads to the following two-
time scale SA algorithm,

bn = bn−1 − ζn

�
bn−1S

2
n (θn−1) −�∇Jn(θn−1)Sn(θn−1)

�
,

θn = θn−1 + γn

��∇Jn(θn−1) − bnSn(θn−1)
�
. (21)

Here, the step-size {ζn} tends to zero more slowly than {γn} does.
For more details and exact conditions on the step sizes see [7]. In
the implementation of the algorithm, we however use constant step-
sizes. Note that since the parallel implementation provides us with
averaged estimates, we use Sn(θn−1) = 1

P

P

j=1 Sn,j(θn−1) and

∇Jn(θn−1) in (21) instead.
At time n−1, let [�pn−1,1, . . . , �pn−1,P ] be P independent parti-

cle filters with corresponding score estimates [Sn−1,1 (θn−1) , . . . ,

Sn−1,P (θn−1)]. The full algorithm for RML parameter estimation
with variance reduction proceeds as follows:

Generic Recursive Maximum Likelihood algorithm

• (Xn, Yn) is generated by the true system and only Yn

is observed
• For j = 1, ..., P

- generate �pn,j ∼ pθn−1 (· |�pn−1,j , Yn:n−1 ) using (19),
i.e. run the SMC algorithm of section 1.2.

- evaluate�∇Jn,j(θn−1) = ∇ϕθn−1(Yn, �pn,j)+ϕθn−1(Yn, �pn,j)Sn,j(θn−1)

using Sn,j(θ) = �Sn−1,j(θ) +
∇pθ(�pn,j |Yn:n−1,�pn−1,j )

pθ(�pn,j |Yn:n−1,�pn−1,j )

• Calculate the averages Sn(θn−1) = 1
P

P

j=1 Sn,j(θn−1) and

∇Jn(θn−1) = 1
P

P

j=1
�∇Jn,j(θn−1)

• Update control variate constant

bn = bn−1 − ζn

�
bn−1Sn

2
(θn−1) −∇Jn(θn−1)Sn(θn−1)

�
• Calculate �∇Jn(θn−1) = ∇Jn(θn−1) − bnSn(θn−1)

• Update parameter θn = θn−1 + γn
�∇Jn(θn−1)

Remark 1 One draw of Zn = (Xn, Yn, �pn) from (18) amounts to
one-step evolution of the unknown true system in (6)-(7) and one
iteration of the SMC algorithm in section 1.2. Here instead of a
single SMC iteration, we use P parallel SMC iterations and obtain
an average estimate to reduce the high variance.
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4. APPLICATIONS

4.1. Linear Gaussian state space model

Consider the following Linear Gaussian state space model

Xn = φXn−1 + σvVn, X0 ∼ N

�
0,

σ2
v

1 − φ2

�

Yn = Xn + σwWn

where Vn
i.i.d.
∼ N (0, 1), Wn

i.i.d.
∼ N (0, 1) and θ � (σv, φ, σw) is un-

known. We use the optimal importance density qθ(Xn|Yn, Xn−1)

and set the true parameter to θ∗ � (0.2, 0.9, 0.15). The RML algo-
rithm was implemented using N = 500 particles, P = 50 parallel
filters, a discount factor of � = 0.5 and the parameter values were
randomly initialized. Figure 1 displays the MLE estimates and the
associate control variate constants.
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x 10
4
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Optimal Control Variates

σ
v

φ

σ
w

Fig. 1. On-line control variate constants and parameter estimates
θn = [σv,n, φn, σw,n] for the linear Gaussian model with true pa-
rameter θ∗ = [0.2, 0.9, 0.15] . Parameter estimates from top to bot-
tom: φn, σv,n and σw,n.

4.2. Stochastic Volatility model

The Stochastic Volatility model

Xn = φXn−1 + σVn, X0 ∼ N

�
0,

σ2

1 − φ2

�

Yn = β exp

�
Xn

2

�
Wn

was considered, with Vn
i.i.d.
∼ N (0, 1) and Wn

i.i.d.
∼ N (0, 1) . We

are interested in estimating the parameter θ � (φ, σV , β). The true
parameter values were set to θ∗ � (0.6, 0.9, 0.7). The RML algo-
rithm was implemented using the prior as the importance density,
i.e. qθ(Xn|Yn, Xn−1) = pθ(Xn|Xn−1). An example of the esti-
mates obtained using N = 500 particles, P = 50 parallel filters and
discount factor of � = 0.2 is shown in Figure 2.

5. DISCUSSION

In this paper we have proposed new particle methods to perform on-
line maximum likelihood parameter estimation in general state space
models. Our method is based on the key fact that the hidden state, its
observation and the particle filter form an ergodic Markov chain that
is controlled by the unknown static parameter of the hidden Markov
model. Maximum likelihood estimates are obtained by optimizing a
suitable average reward function using a score function approach and
SA techniques. A batch implementation of the proposed algorithm
can also be obtained.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
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σ
v

φ

σ
w

Fig. 2. On-line parameter estimates θn = [σn, φn, βn] for the Sto-
chastic Volatility model with true parameter θ∗ = [0.6, 0.9, 0.7].
From top to bottom: φn, βn and σn.
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[14] Tadić V.B. and Doucet A. (2002) Exponential forgetting and
geometric ergodicity in state-space models. Proceedings 41th
IEEE Conf. Decision and Control.

III  332


