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ABSTRACT

This paper presents a mathematically novel low-rank linear statisti-
cal estimator named minimum-variance pseudo-unbiased low-rank
estimator for applications to ill-conditioned linear inverse problems.
Based on a simple fact: ‘any low-rank estimator can not be a (uni-
formly) unbiased estimator’, we introduce pseudo-unbiased low-rank
estimator, as an ideal low-rank extension of unbiased estimators.
The minimum-variance pseudo-unbiased low-rank estimator mini-
mizes the variance of estimate among all pseudo-unbiased low-rank
estimators, hence it is characterized as a solution to a double layered
nonconvex optimization problem. The main theorem presents an
algebraic structure of the minimum-variance pseudo-unbiased low-
rank estimator in terms of the singular value decomposition of the
model matrix in the linear statistical model. The minimum-variance
pseudo-unbiased low-rank estimator is not only a best low-rank ex-
tension of the minimum-variance unbiased estimator (i.e., Gauss-
Markov estimator) but also a nontrivial generalization of the Mar-
quardt’s low-rank estimator (Marquardt 1970).

1. INTRODUCTION

Inherent inadequacy of the least squares estimator, for ill-conditioned
linear statistical model, is commonly understood through the fact [1]:
the order of the mean squared distance, between the estimate and the
value of the parameter, achievable by the least squares estimator, is
inversely proportional to the square of the smallest nonzero singular
value of the model matrix (the additive noise is often assumed to be
white) [See Eq.(7)]. When the model matrix in the linear statistical
model is of full column rank, the least squares estimator, under the
above noise model, can alternatively be characterized as the unique
minimum-variance unbiased estimator. As a result, any unbiased es-
timator can not remedy the above drawback of the least squares es-
timator. This fact motivates a variety of biased estimators realizing
superior performance to the least squares estimator. These include
for example, the ridge regression estimator [1, 2], essentially based
on common idea of so called the Tikhonov’s regularization [3–6]1,
the minimum-variance conditionally unbiased estimator subject to
linear restrictions [10], and the rank-reduction estimator [11, 12].

The rank-reduction estimator [11] is the generalized inverse of
the best low-rank approximation to the model matrix of the linear
statistical model, where the best low-rank approximation is given by

† This manuscript is made by the 1st author based partially on a joint
work when the 2nd author was in Tokyo Institute of Technology (–March
2005). Currently, the 2nd author is working for the SONY Corporation.

1The ridge regression estimator requirs thus a certain delicate choice, de-
pending on the unknown estimandum, of the optimal regularization parame-
ter, which has motivated many studies on efficient approximate selections of
the optimal regularization parameter (See for example [7–9] and references
therein).

vanishing small singular values in the singular-value-decomposition
the model matrix. Indeed, Marquardt clearly proves that this simple
idea greatly improves the mean squared error attained by the least
squares estimator. This idea induced the shrinkage estimator[6, 7]
and the rank-shaping estimator[13] which achieve similar effect by
nonnegatively weighting the singular values of the generalized in-
verse of the model matrix. Chipman [12] recently shed light on the
Marquardt’s classical invention and presented ”a” generalization of
the Marquardt’s idea to the case where the covariance of noise ad-
mits general positive definite matrices (See Remark 1).

In spite of the great invention of Marquardt’s rank-reduction es-
timator, it has not yet been clear especially on the following fun-
damental questions: (i) Can we characterise in any statistical es-
timation theoretic sense the Marquardt’s rank-reduction estimator
over all possible low-rank estimators ? (ii) Is the Marquardt’s rank-
reduction estimator optimal in any statistical estimation theoretic
sense ? (iii) Is there any connection between the Marquardt’s es-
timator and classical optimal estimator for example the minimum-
variance unbiased estimator ?

The 1st goal of this paper is to propose a novel low-rank lin-
ear statistical estimator named minimum-variance pseudo-unbiased
low-rank estimator for application to ill-conditioned linear inverse
problems. The 2nd goal of this paper is to show that this minimum-
variance pseudo-unbiased low-rank estimator provides a unified sta-
tistical estimation theoretic view to understand the function of the
Marquardt’s rank-reduction estimator as well as the minimum - vari-
ance unbiased estimator (i.e., Gauss-Markov estimator). The main
theorem presents an algebraic structure of the minimum-variance
pseudo-unbiased low-rank estimator in terms of the singular value
decomposition of the model matrix in the linear statistical model.
By this theorem, it is revealed that the minimum-variance pseudo-
unbiased low-rank estimator is a nontrivial generalization of the
Marquardt’s rank-reduction estimator. Due to lack of space, all proofs
are omitted.

2. PRELIMINARIES

To clarify the background and the motivation of this study, we start
with a brief review on the ill-conditioned linear inverse problem.

A. Estimation in Linear Regression Model

The linear statistical model assumes that we can observe data vector
y ∈ R

m of the form:

y = x + ε = Lβ + ε, (1)

where L ∈ R
m×n is a known nonzero model matrix (or design ma-

trix), β ∈ R
n is an unknown parameter vector to be estimated, and

ε ∈ R
m is a random vector with zero mean and with a positive
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definite covariance E(εεt) = Q � 0. The vector y can be inter-
preted as the outcome of inexact measurement of x. Indeed, y itself
is a random vector because it is the sum of random vector ε and the
constant vector Lβ.

Developing well-behaved linear estimator of the form

�β := Φy (≈ β) ,

where Φ ∈ R
n×m is a constant matrix, has been a primitive sta-

tistical issue in wide range of mathematical sciences and engineer-
ings including, e.g., communication, ecomonics, signal processing,
seismology, and control, More precisely, a major goal of the linear
estimator is to find Φ suppressing the mean square error of Φy:

J(Φ) := E
�
‖Φy − β‖2

�
= E

�
‖Φy − E(Φy)‖2�� �� �+ ‖E(Φy) − β‖2� �� �

Variance Bias2

=
� �� �
tr
�
ΦQΦt

�
+

� �� �
‖(ΦL − I)β‖2 (2)

as much as possible, where ”E” denotes the expectation and ‖ · ‖
stands for the Euclidean norm.

Since β is unknown, it is impossible to minimize J(Φ) globally
over Φ ∈ R

n×m, hence we have to optimize some other criteria in
practical situations.

B. Least-squares estimation and Minimum-variance unbiased
estimation

The least-squares estimator is defined as a mapping Φls : R
m →

R
n satisfying

Φls(y) ∈ SL(y) := arg min
�β∈Rn

‖y −L�β‖2
, ∀y ∈ R

m
.

For every y ∈ R
n, the orthogonal projection theorem ensures

SL(y) �= ∅ and the unique existence of minimum norm solution:�βgi = arg min
�β∈SL(y)

‖�β‖. The mapping L† : y 	→ �βgi is nothing

but the Moore-Penrose generalized inverse of L, hence L† is a re-
alization of the least-squares estimator. Suppose the singular value
decomposition (SVD) of L is given by

L = UΣV
t =:

min(m,n)�
i=1

σiuiv
t
i, (3)

where U = [u1, · · · , um] ∈ R
m×m and V = [v1, · · · , vn] ∈

R
n×n are orthogonal (i.e., U tU = Im and V tV = In) and

Σ = diag(σ1, · · · , σmin(m,n))

:=

�						

						�

Σm ∈ R
m×m if m = n�


 Σn

· · ·
0

�
� ∈ R

m×n if m > n

�
Σm

... 0

�
∈ R

m×n if m < n,

with

Σmin(m,n) =

�
����


σ1 0 · · · 0

0 σ2

. . .
...

...
. . .

. . . 0
0 · · · 0 σmin(m,n)

�
����� .

The diagonal entry σi of Σmin(m,n) is called the (i-th largest) sin-
gular value of L and satisfies σ1 ≥ σ2 ≥ · · · ≥ σrank(L) > 0 and
σi = 0 if i > rank(L).

The Moore-Penrose generalized inverse L† can be expressed as

L† = V Σ†U t, where Σ† := diag
�

1
σ1

, . . . , 1
σrank(L)

, 0, . . . , 0
�
∈

R
n×m. In particular, when

rank(L) = n, (4)

the set SL(y) is singleton, and the unique least-squares estimator
is expressed simply by Φls(y) = L†y =

�
LtL

�−1
Lty. In this

special case [ i.e. (4)], Φ := Φls is an unbiased estimator, i.e., it
satisfies

ΦL = In (5)

(⇐⇒ E(Φy) = β, ∀β ∈ R
n [see (2)]).

Obviously, there exists an unbiased estimator Φ, hence Φ satis-
fies ΦL = In, if and only if L satisfies (4). Therefore, under the
conditions (4) and Q � 0, a natural better candidate than Φls is the
solution to a constrained optimization problem:

Problem 1
minimize tr

�
ΦQΦt

�
subject to ΦL = In.

�

Indeed, Problem 1 has the unique solution:

Φgm(y) =
�
Lt

Q
−1L

�−1
Lt

Q
−1

y, ∀y ∈ R
m

, (6)

satisfying obviously J(Φgm) ≤ J(Φls). The estimator Φgm is
called the minimum-variance unbiased estimator (or Gauss-Markov
estimator). From (6), when Q = σ2Im, Φgm = Φls holds under
the conditions (4). Moreover, when Q = σ2Im and rank(L) ≤ n,
it follows

J(L†) = σ
2

�
�rank(L)�

i=1

1

σ2
i

�
�

� �� �
+

n�
i=rank(L)+1

|vt
iβ|2

� �� �
.

Variance Bias2 (7)

Eq.(7) implies that the least squares estimator yields inherently the
drastic inadequacy when the linear regression model (1) is ill-posed,
i.e., L possesses its singular values near zero [1].

As seen from the simplest case: n = rank(L) and Q = σ2I ,
where Φgm = Φls holds, any unbiased estimator can not remedy
the above drastic inadequacy of the least squares estimator. To help
circumvent this difficulty, several biased estimators have been devel-
oped, for example, the ridge regression [1, 2], the minimum-variance
conditionally unbiased estimator subject to linear restrictions [10],
the rank reduction estimator [11, 12], rank-shaping estimator [13].

C. Marquardt’s idea for ill-conditioned linear regression

To avoid the drastic inadequacy of small singular values σi ≈ 0
(i = r + 1, . . . , rank(L), r < rank(L)) of L, Marquardt [11]
proposed, in place of using L†, to use

�L†
r ∈ R

m×n(r) := {X ∈ R
m×n | rank(X) ≤ r}, (8)

which is the Moore-Penrose generalized-inverse of

�Lr := U

�
��


Σr

... 0
. . . . . . . . .

0
... 0

�
���V

t ∈ R
m×n(r),
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where

Σr =

������
σ1 0 · · · 0

0 σ2

. . .
...

...
. . .

. . . 0
0 · · · 0 σr

������ .

The elimination of small singular value by �Lr is a natural choice
according to the Schmidt approximation theorem (often credited to
Eckart-Young’s theorem):�Lr ∈ arg min

X∈Rm×n(r)
‖X − L‖F ,

where ‖ · ‖F stands for the Frobenius norm. Indeed, we have

J
� �L†

r

�
= σ

2

	
r


i=1

1

σ2
i

�
+

n

i=r+1

|vt
iβ|2,

which yields
rank(L)

i=r+1

1

σ2
i

>
1

σ2
‖β‖2 (9)

=⇒

rank(L)

i=r+1

1

σ2
i

>
1

σ2

rank(L)

i=r+1

|vt
iβ|2 ⇔ J

� �L†
r

�
< J(L†). (10)

This fact implies that there exists a better estimator, in R
n×m(r),

than L† when L has sufficiently small singular values satisfying
(9). However, any Φ ∈ R

n×m(r) can not satisfy (5), i.e., any
Φ ∈ R

n×m(r) is no longer unbiased even when rank(L) = n. This
observation induces a natural question: Is there any better biased es-
timator, in R

n×m(r), which can suppress not only its variance but
also its bias more than L†

r does ?

Remark 1 (Chipman’s generalization [12]) Marquardt’s idea was
recently extended to the case where the general linear statistical
model (1) admits general E(εεt) = Q � 0. As a low-rank ap-

proximation of L, Chipman employed �L(Q)
r satisfying

�L(Q)
r ∈ arg min

X∈Rm×n(r)
‖X −L‖Q−1 , (11)

where ‖X − L‖Q−1 :=
�

tr ((X −L)tQ−1(X − L)). As a gen-
eralization of Marquardt’s rank-reduction estimator, Chipman pro-
posed to use

�L(Q)‡
r : R

n � y 	→ 
βogi := arg min
�β∈S

�L
(Q)
r

(y)

‖
β‖Q−1 ,

where ‖
β‖Q−1 :=

�
tr
�
βt

Q−1
β� and

S
�L
(Q)
r

(y) := arg min
�β∈Rn

‖y − �L(Q)
r

β‖2

, ∀y ∈ R
m

.

Some matrix inequalities are derived as a generalization of (9) and
(10) [Note: [12, (4.18)] corresponds to the relation (10)] . �

3. MINIMUM-VARIANCE PSEUDO-UNBIASED
LOW-RANK ESTIMATION

In this paper, as a natural generalization of problem 1, we consider
the following problem.

Problem 2 (Minimum-variance pseudo-unbiased low-rank estima-
tion (Type 1)) For the linear statistical model (1) and arbitrarily given
r ∈ {1, 2, . . . , min(m, n)}. Then the problem is :

Minimize tr
�
ΦQΦt

�
: Variance of ΦQΦt

subject to Φ ∈ S1,
where S1 := arg min

X∈Rn×m(r)
‖XL − In‖F .

���
Remark 2

(a) Problem 2 is a natural generalization of classical minimum-
variance unbiased estimator Φgm [see (6) as the solution to
Problem 1] because of (2) and

Bias2 = ‖(ΦL − In)β‖2 ≤ (‖ΦL − In‖2)
2 ‖β‖2 (12)

≤ (‖ΦL − In‖F )2 ‖β‖2
, (13)

where we used expressions, with λi

�
(ΦL − In)t(ΦL − In)

�
[the i-th eigenvalue of (ΦL − In)t(ΦL − In)],

‖ΦL − In‖2 =
�

max{λi [(ΦL − In)t(ΦL − In)]}n
i=1

‖ΦL − In‖F =

���� n

i=1

λi [(ΦL − In)t(ΦL − In)].

(b) We call any estimator Φ ∈ S1 a pseudo-unbiased low-rank
estimator (of Type 1). We call the solution (to Problem 2)
Φ∗

r ∈ arg min
Φ∈S1

tr
�
ΦQΦt

�
the minimum-variance pseudo-

unbiased low-rank estimator (of Type 1). Problem 2 is a
meaningful (nontrivial) generalization of Problem 1 because
the set S is not singleton in general (see Lemma 15). This
fact is attribute not only to the possible singularity of LLt ∈
R

m×m but also to the distribution of singular values of

Lt
��
LLt�1/2

�†
= V

���� Irank(L)

... 0
. . . . . . . . .

0
... 0

����U
t
.

(c) The bounds in (12) and (13) tempt us to formulate, in place
of Problem 2, another problem:

Minimize tr
�
ΦQΦt

�
: Variance of ΦQΦt

subject to Φ ∈ S2,
where S2 := arg min

X∈Rn×m(r)
‖XL − In‖2 .

���
(14)

We call any estimator Φ ∈ S2 a pseudo-unbiased low-rank
estimator (of Type 2). We call the solution to (14) the minimum-
variance pseudo-unbiased low-rank estimator (of Type 2) (The
investigation of Type 2 is underway).

(d) Problem 2 is a double layered constrained optimization prob-
lem, where the solution set of the 1st optimization problem
is given as S1 over which tr

�
ΦQΦt

�
must be minimized

further. Since the set S1 is nonconvex in R
n×m unlike the

case discussed in [14], we have to utilize certain algebraic
parametrization of S1 for the 2nd optimization. �

The next lemma presents an algebraic parametrization of the set
S1 of all pseudo-unbiased low-rank estimators (of Type 1), based on
which we reach finally Theorem 1 as the solution of Problem 2.

Lemma 1 (Parametrization of S1) Suppose that L ∈ R
m×n is ex-

pressed as in a singular value decomposition (3) and s = rank(L).
Then for any r ∈ {1, 2, . . . , min(m, n)}, the followings are equiv-
alent:
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(a) Φ ∈ S1.
(b) Φ is expressed as

Φ = U(r′+µ)(Ir′ ⊕ Γ)
�
(Ir′ ⊕ Γ)t(U(r′+µ))

tLt(LLt)†

+Z
�
Im − (LLt)(LLt)†

��
,

where (i) (µ, r′) = (s, 0) for r ≤ s, (µ, r′) = (min(m,n)−

s, s) for r > s, (ii) U(r′+µ) = [u1, . . . , ur′+µ] ∈ R
m×(r′+µ),

(iii) Γ ∈ R
µ×(r−r′) satisfying ΓtΓ = Ir−r′ , (iv) Z ∈ R

r×m,

and (v) Ir′ ⊕ Γ =

�
���

Ir′

... 0
. . . . . . . . .

0
... Γ

�
��	. �

Theorem 1 (Algebraic expression of the minimum-variance pseudo-
unbiased low-rank estimator (Type 1)) Suppose that L ∈ R

m×n is
expressed as in a singular value decomposition (3) and s = rank(L).
Then for any r ∈ {1, 2, . . . , min(m, n)}, a solution Φ∗

r ∈ R
n×m(r)

to Problem 2 is given by

Φ∗
r :=
����

���


V(s)Γ
∗(Γ∗)t

�
V(s)

�t
L†
�
Im − Q1/2

�
(Im −LL†)Q1/2

�
†
�

if r ≤ s,

L†
�
Im − Q1/2

�
(Im − LL†)Q1/2

�
†
�

if r ≥ s,

(15)

and tr (Φ∗
rQΦr) =

�
1≤i≤r γi, where (i) V(s) := [v1, v2, . . . , vs],

and (ii) (γi)
s
i=1 (γ1 ≤ · · · ≤ γs: non-decreasing order) and Γ∗ :=

[ν1, · · · , νr] ∈ R
s×r satisfying (Γ∗)tΓ∗ = Ir are given by orthog-

onal matrix [ν1, · · · , νs] ∈ R
s×s through any eigenvalue decompo-

sition
s�

i=1

γiνiν
t
i :=

�
V(s)

�t
L†

Q
1/2

�
Im −

�
Q

1/2(Im − LL†)
��

Q
1/2(Im − LL†)

�
†
�

Q
1/2
�
L†
�t

V(s) ∈ R
s×s

.

In particular, we have Φ∗
r [in (15)] = �L†

r [in (8)] if Q = σ2Im and
r < s. �

Remark 3
(a) For r ≥ s, Φ∗

r does not depend on r, hence Φ∗
r ∈ R

n×m(s)
is guaranteed.

(b) By comparison between Problem 2 and Problem 1, the 2nd
expression in (15) presents a nontrivial generalization of the
minimum-variance unbiased estimator (i.e., Gauss-Markov
estimator) Φgm given in (6). Indeed, by Problem 2, we have a
new expression of the Gauss-Markov estimator: Φgm = Φ∗

n
when the condition (4) holds. Major difference between Φgm

and Φ∗
n is that Φ∗

n is always well-defined while Φgm is de-
fined only when the condition (4) is satisfied. This new ex-
pression Φ∗

n is regarded a natural extension of Φgm. In this
sense, we call Φ∗

n the minimum-variance pseudo-unbiased es-
timator (Type 1) (without rank reduction).

(c) For r = s, two expressions in (15) are same. By the orthogo-
nality of Γ∗ ∈ R

s×s, this fact is verified as

V(s)Γ
∗(Γ∗)t �

V(s)

�t
L† = V(s)

�
V(s)

�t
L† = L†

.

(d) The last statement of Theorem 1 implies that Marquardt’s
rank-reduction estimator can be characterized as a special
example of the minimum-variance pseudo-unbiased low-rank
estimator (Type 1) corresponding to the case Q = σ2I . �

4. CONCLUSION

As an ideal low-rank extension of the minimum-variance unbiased
estimator for ill-conditioned linear inverse problems, we proposed
a mathematically novel low-rank estimator named minimum vari-
ance pseudo-unbiased low-rank estimator. Thanks to the algebraic
structure of the set of all pseudo-unbiased low-rank estimators, an
algebraic expression of the proposed estimator is obtained. Finally,
it is revealed that the proposed estimator is not only a best low-rank
extension of the minimum-variance unbiased estimator but also a
nontrivial generalization of the Marquardt’s low-rank estimator.
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