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ABSTRACT

This paper presents a technique for accessing multidimen-
sional complex number AR model order and parameters through
matrix factorization. The principle of this technique con-
sists of the transformation of the multidimensional model to
a pseudo SISO (Simple Input Simple Output) AR model then
performing factorization of the covariance matrix of the data.
This factorization then leads to a recursive form of the param-
eter and order estimation. The methodology developed here
may be applied to an AR model of any dimension. Computer
simulation results are provided to illustrate the behavior of
this method.

1. INTRODUCTION

A multidimensional or N-dimensional complex-number AR
model (or ND-AR) represents y(n1, n2, ..., nN ), the compo-
nents of the complex number signal y at location (n1, n2, ..., nN ),
as a linear combination of the complex number components
y(n1 − k1, n2 − k2, ..., nN − kN ) and an additive noise
w(n1, n2, ..., nN ), where (k1, k2, ..., kN )εI , and I is a set of
neighbors excluding (0, 0, ..., 0). In recent years in the field
of multidimensional parametric modeling, two-dimensional
(N = 2) autoregressive (2D-AR) modeling has received very
high levels of attention in many areas, particularly in digital
signal and image processing areas. Many works have accord-
ingly merged, e.g. [1]-[2] and relevant references therein. Al-
though three dimensional (N = 3) AR (3D-AR) has received
some attention, studies concerning more than three dimen-
sions are rare, particularly in contrast to their potential appli-
cations [3],[4],[5]. This is mainly due to the high complexity
of the generalization of 2D-AR cases. The aim of this paper is
to propose a general framework for estimation of general ND-
AR model parameters and order . Based on matrix factoriza-
tion, the recursive form of this algorithm for both dimensions
(time, space,...) and order is straightforward. It allows easy
AR modeling of, for example, three, four (or more) dimension
signals such as analysis of video sequences . The properties
of the algorithm are introduced and its behavior is illustrated
with N = 3 using a numerical example.
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2. FORMULATION OF MULTIDIMENSIONAL
COMPLEX AR PROBLEM

Consider the second order stationary multidimensional com-
plex AR process (ND-AR) defined by :

y(n1, n2, ..., nN ) =
∑

...
∑

(k1,k2,...,kN )εI

a(k1, k2, ..., kN )

×y(n1 − k1, n2 − k2, ..., nN − kN ) + w(n1, n2, ..., nN ), (1)

where u(n1, n2, ..., nN ) is a field of zero mean constant variance-
independent random noise and the parameters a(k1, k2, ..., kN )
are complex numbers and provide a stable system. In the fol-
lowing, attention is focused on the first hyperplane model,
without loss of generality (the methodology may be applied
to the other hyperplanes) i.e., the set of neighbors is I =
{(k1, k2, ..., kN )|ki = 1, 2, ...pi, i = 1, 2, ...N}. For conve-
nience we assume that p1 = p2 = ...pN = m, i.e. the model
orders are identical in all directions. The following methodol-
ogy is a generalization of UDUH factorization, introduced in
[6] and used in [7] and [8], respectively, for one dimensional
real and complex number cases. This factorization made it
possible to access the parameter and the order from 0 to m
through an algorithm having good numerical properties and
concise computation.

Let us define the following vectors in which elements y
and a are stacked.

φT
m(n1, n2, ..., nN ) =

[y(n1, n2, ..., nN − 1)...y(n1, n2, ..., nN − m)...
y(n1, n2 − 1, ..., nN )...y(n1, n2 − m, ..., nN )...

y(n1 − m,n2 − m, ..., nN − m) y(n1, n2, ..., nN )]

θT
m(n1, n2, ..., nN ) =

[a(0, 0, ...1, )...a(0, 0, ...m) a(0, 1, ...0, )...
a(0,m, ...0, )...a(m, 0, ..., 0)...a(m, m,m...m) 1] (2)

Note that y(n1, n2, ..., nN ) and 1 are part of these vectors.
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Let also

xT
m(n1, n2, ..., nN ) =

[y(n1, n2, ..., nN − 1)...y(n1, n2, ..., nN − m)...
y(n1, n2 − 1, ..., nN )...y(n1, n2 − m, ..., nN )...

y(n1 − m,n2 − m, ..., nN − m)] (3)

This means

φT
m(n1, n2, ..., nN ) = [xT

m(n1, n2, ..., nN ) y(n1, n2, ..., nN )]
(4)

Defining data covariance matrix :

Pm(n1, n2, ..., nN ) =[
n1∑

i1=1

...

nN∑
iN=1

φm(n1, n2, ..., nN )φH
m(n1, n2, ..., nN )

]−1

(5)

and assuming that p = (m + 1)N , the size of this matrix
is p×p. For convenience the following notations will be used
when no confusion is possible.

n = (n1, n2, ..., nN ) (6)

k = (k1, k2, ..., kN )

and generally any index variable (t1, t2, ..., tN ) will be de-
noted :t = (t1, t2, ..., tN ). Also

∑n1
i1=1 ...

∑nN

iN=1 will be

denoted
∑n

i=1 and
∑n1−i

i1=1 ...
∑nN−i

iN=1 will be denoted
∑n−i

i=1

We then write Pm in factored form as follows:

Pm(n) = Um(n)Dm(n)UH
m (n); (7)

where H denotes the Hermitian matrix transpose and U is
an upper triangular matrix with all diagonal elements equal to
unity. The elements of this upper triangular matrix are column
vectors with dimension 1 to p defined as follows :

Um(n) = [ 1 col{ϑ0,p(n) 1}... col{ϑp−i,i(n) 1}...
col{ϑp−1,1(n) 1}... col{ϑp,0(n) 1} ] (8)

Dm(n) in eq.(7) is a diagonal matrix containing loss func-
tions for order 1 to m, as seen below.

Remark:

* ϑp−i,i(n) is a column vector. Its dimension is p − i.

* col{ϑp−i,i(n) 1} =
[

ϑp−i,i(n)
1

]
is the (p − i +

1)th column.

* Due to the structure of the model defined in eq.(2),
ϑp−i,i(n) consists of part or all of the true parameters
of the model, depending on whenever the model order
is less or greater than the dimension of ϑp−i,i(n)

Eq.(7) is achieved from successive decompositions. Indeed,
using eq.(4) in eq.(5), it comes :

P−1
m (n) =

[ ∑n
j=1 xm(j)xH

m(j)
∑n

j=1 xm(j)y(j)∑n
j=1 y(j)xH

m(j)
∑n

j=1 |y(j)|2
]
(9)

From classical Least squares estimation theory(see e.g.[9]), it
is known that :

ϑp,0(n) =

⎡
⎣ n∑

j=1

xm(j)xH
m(j)

⎤
⎦
−1

n∑
j=1

xm(j)y(j) (10)

or similarly

ϑp−i,i(n) =

⎡
⎣n−i∑

j=1

φm(j)φH
m(j)

⎤
⎦
−1

n−i∑
j=1

φm(j)y(j) (11)

Thus eq.(9) may also be written

P−1
m (n) =[

Ip−1 0
ϑH

p,0(n) 1

] [
Qm(n) 0

0 Cp,0(n)

] [
Ip−1 ϑH

p,0(n)
0 1

]
(12)

where

Qm(n) =
n∑

i=1

xm(i)xH
m(i) (13)

and

Cp,0(n) =
n∑

j=1

|y|2(j) − ϑH
p,0(k)

n∑
j=1

xm(j)xH
m(j)ϑp,0(n)

(14)
Cp,0 is equivalent to a loss function. Indeed eq.(10) is also
equivalent to :⎡

⎣ k∑
j=1

xm(j)xH
m(j)

⎤
⎦ ϑp,0(n) =

k∑
j=1

xm(j)y(j) (15)

Defining

ŷ(n) =
n∑

j=1

xH
m(j)ϑp,0(n) (16)

yields

Cp,0(n) =
n∑

j=1

|y(j) − ŷ(j)|2 (17)

and generally,

Cp−i,i(n) =
n−i∑
j=1

|y(j) − ŷ(j)|2 (18)

Thus Cp−i,i(n) are positive. Now, returning to eq.(13): Qm(n),
which is in the form of eq.(5), is then iteratively decomposed
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in the same way, and ultimately, after taking the inverse of the
matrices involved in the decomposition, eq.(7) is obtained.
As mentioned above, Um(n) is an upper triangular complex
number matrix, the elements of which are ϑp−i,i(n).
Dm(m) is a diagonal matrix, the elements of which are the
inverse of the loss function, i.e. C−1

p−i,i(n) Now, it is impor-
tant to note that the similarity with a 1 D case is just apparent.
Indeed, by its construction the model defined in eq.(2) has the
following characteristics:

• The true parameters as defined in eq.(2) are not directly
the columns of Um, but are included in these columns.
This is due to the definitions of the model in eq.(2).
Indeed assuming the order of the model is m = m0,
then the first m0-elements of each column of Um; m>m0

are actually the first estimated m0-parameters of the
model. The elements from m0 to m have no physi-
cal meaning. This is repeated periodically to obtain all
the parameters by segments of m0 elements. Since the
dimension of Um is (m+1)N × (m+1)N true param-
eters are located in column (m0 + 1)(m + 1)N−1 − 1
since the a(0, 0, ..., 0) = 1 is not being estimated. Note
that this is a generalization which is also valid in the
1-D case.

• Accordingly the elements of Dm are pseudo-periodic,
with a period m+1 in each direction (dimension). The
minimum within each period constitutes the actual loss
function, and the first minimum of this cost function
gives the true order m0 of the model. Note that all el-
ements of the matrices are stacked and thus Dm has
(m + 1)N × (m + 1)N elements. Thus, to find the true
order of the model the following steps may be used :

1. split elements of Dm into successive segments of
m+1 elements, and create a new vector, M1 con-
sisting of the minima of the segments.

2. repeat 1) using the above set of minima.

3. stop when the size of the vector of minima is m+
1. This vector is called MN . This procedure
needs N steps.

4. Finally the minimum of MN gives the true order
m0

It is clear that the order-recursion is achieved from the above.
The dimension (time, space,...)-recursion may be obtained by
generalizing the complex 1-D case, using UDUH decompo-
sition. This last recursion is obtained by defining n − 1 =
(n1 − 1, n2 − 1, ..., nN − 1) and writing the relevant recur-
sions. Due to space limitation, we only provide below the
main steps of the method. From eq.(5), it can be written :

Pm(n) = [P−1
m (n − 1) + φm(n)φH

m(n)]−1 (19)

Defining the variables f = UT
m(n − 1)φm(n), g = Dm(n −

1)f∗, and β(n) = 1 + fT g, where the asterisk denotes the

complex conjugate, at the rank one update expression, the ma-
trix Pm(n) can be expressed by :

Pm(n) = Um(n)Dm(n)UH
m (n) =

Um(n − 1)
[
Dm(n − 1) − ggH

β(n)

]
UH

m (n − 1) (20)

From these recursions, only elements of Um with physical
meanings are retained. To speed up computations, the re-
cursions may be applied only to the elements with physical
meanings.

3. NUMERICAL SIMULATION

For simplicity in the presentation of the parameters of the
model , we set N = 3, m = 4, m0 = 2. We consider the
following 3D complex AR model as defined in eq.(2), where
a(k1, k2, k3), k1 = 0, 1, 2; k2 = 0, 1, 2; k3 = 0, 1, 2; defined
as below. a(0, 0, 0) = 1 is not being estimated.

y(n1, n2, ..., n3) =
2∑

k1=0

2∑
k2=0

2∑
k3=0;(k1,k2,k3) �=(0,0,0)

a(k1, k2, ..., kN )

×y(n1 − k1, n2 − k2, ..., nN − kN ) + w(n1, n2, ..., nN ),

where y is a 16 × 16 × 16 complex field driven by a com-
plex gaussian random field with variance 0.1 : The results

Table 1.

a(:, :, 0) =

1 -0.8000 - 1.1000i -0.1500 + 0.4500i
-0.8000 - 1.1000i -0.5700 + 1.7600i 0.6150 - 0.1950i
-0.1500 + 0.4500i 0.6150 - 0.1950i -0.1800 - 0.1350i

a(:, :, 1) =

-0.8000 - 1.1000i -0.5700 + 1.7600i 0.6150 - 0.1950i
-0.5700 + 1.7600i 2.3920 - 0.7810i -0.7065 - 0.5205i
0.6150 - 0.1950i -0.7065 - 0.5205i -0.0045 + 0.3060i

a(:, :, 2) =

-0.1500 + 0.4500i 0.6150 - 0.1950i -0.1800 - 0.1350i
0.6150 - 0.1950i -0.7065 - 0.5205i -0.0045 + 0.3060i
-0.1800 - 0.1350i -0.0045 + 0.3060i 0.0877 - 0.0607i

Theoretical parameters

are shown in fig.1 and Table 2. Dm is shown in fig.1 with
m = 4 here (upper curve) and the result after minima ex-
traction (lower curve), it can be seen that the order found is
2. Table 2 shows the estimated parameters extracted from
Um; m = 4 at column (m0 + 1)(m + 1)2 − 1 = 74.
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Table 2.

a(:, :, 0) =

1 -0.8003 - 1.0995i -0.1492 + 0.4500i
-0.8007 - 1.1003i -0.5685 + 1.7608i 0.6149 - 0.1970i
-0.1502 + 0.4501i 0.6149 - 0.1960i -0.1816 - 0.1345i

a(:, :, 1) =

-0.8002 - 1.0988i -0.5700 + 1.7594i 0.6155 - 0.1937i
-0.5700 + 1.7605i 2.3919 - 0.7826i -0.7079 - 0.5199i
0.6155 - 0.1942i -0.7074 - 0.5199i -0.0030 + 0.3071i

a(:, :, 2) =

-0.1491 + 0.4497i 0.6148 - 0.1948i -0.1795 - 0.1360i
0.6154 - 0.1940i -0.7072 - 0.5211i -0.0045 + 0.3069i
-0.1794 - 0.1361i -0.0046 + 0.3067i 0.0879 - 0.0614i

Estimated parameters

4. CONCLUSION AND GENERAL REMARKS

We have presented a new estimation of multidimensional com-
plex number AR model order and parameters. This algorithm
was based on UDUH matrix factorization which generalized
the 1D cases. Any other matrix factorization may be used
instead. The proposed approach is an order recursive algo-
rithm which allows simultaneously to access the parameters
of the model with any order from 0 to a given order m. The
dimension (time, space,...) recursive form of the algorithm is
straightforward, as in the 1-D case. This thus makes it possi-
ble to perform AR modeling of video sequences for example.
However, for very long data sets, this algorithm may be time
consuming and bias may appear due to the ill-conditioning.
In this case any fast techniques and regularization techniques
may be used, (see e.g.[10]). The algorithm is finally illus-
trated using simulation data.
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