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ABSTRACT

An approach is presented generalising a recently introduced

refinement of Orthogonal Matching Pursuit methodologies.

The proposed strategy evolves by backward and forward move-

ments which, if applied at the end of an Orthogonal Matching

Pursuit method, are guaranteed to improve upon such an ap-

proach.

1. INTRODUCTION

We are concerned with the following nonlinear approximation

problem: A given signal is approximated by a linear combi-

nation of elementary signals, called atoms, which are drawn

from a large, and in general redundant, set called a dictionary.

The linear combination is said to be ‘sparse’ if the number of

atoms intervening in the approximation is ‘small’ in compar-

ison to the number of sample points that would be needed

to store the target signal. Over the last fifteen years the sig-

nal processing community has been interested in this problem

and developed algorithms for finding sparse solutions [1–11].

When the dictionary is orthonormal, nonlinear approxi-

mation problems can be solved in practice without difficulties.

Moreover, if the dictionary is sufficiently close to orthogonal

(almost incoherent) the problem may still be tractable [12–

14]. However, research indicates that approximation of sig-

nals using coherent redundant dictionaries offers a real gain

in approximation quality. Unfortunately the problem of con-

structing the best approximation of a signal as a linear super-

position of k atoms drawn from a coherent dictionary is an

intractable NP-hard problem even if the dictionary is finite.

Hence, it is normally addressed by heuristic stepwise greedy

algorithms which do not seek for the optimal solution. We re-

fer to those algorithms as greedy Pursuit Strategies. Since the

seminal paper of Mallat and Zhang [2] introducing the Match-

ing Pursuit (MP) method in signal processing a number of

modifications to this approach have been proposed. Two ba-

sic variations improving MP convergence rate are Orthogo-

nal Matching Pursuit (OMP) [3,4] and Optimised Orthogonal
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Matching Pursuit (OOMP) [8]. We refer to both methods as

Orthogonal Matching Pursuit Strategies (OMPS).

In this communication we would like to extend the re-

finement of OMPS we have recently proposed [11]. If ap-

plicable, such a refinement, which is based on interchange of

pair of atoms, is guaranteed to improve upon OMP or OOMP

methods. The generalisation that we introduce here entails

interchanges of more than two atoms. We show that, without

increasing the complexity too much such generalisation may

produce a significant gain in the sparseness of a representa-

tion. The paper is organised as follows: Section 2 introduces

the proposed strategy improving OMPS results. In Section 3

the approach is illustrated by numerical simulations. The con-

clusions are drawn in Section 4.

2. SETTING UP THE PROBLEM

We deal mathematically with a signal, f , by considering it as

an element of an inner product space, H , equipped with an

inner product 〈·, ·〉 and induced norm || · || = 〈·, ·〉1/2. Thus,

the distance between two signals in H is the norm of their

difference.

A finite dictionary D is a finite collection of normalised to

unity elementary signals (atoms). We denote each atom by αi

so that the corresponding dictionary is given as D = {αi}i∈I ,

where I is a set of labels. The k-term approximation of f by

k selected atoms {αl1 , . . . , αlk} is expressed in the form

f (k) =

k∑

i=1

c
(k)
i αli . (1)

The coefficients {c
(k)
i }k

i=1 yielding the approximation f (k)

which is the orthogonal projection of f onto the subspace

Vk = span{αli}
k
i=1 can be computed as: c

(k)
i = 〈β

(k)
i , f〉, i =

1, . . . , k, where {β
(k)
i }k

i=1 is the unique biorthogonal sequence,

〈β
(k)
j , αli〉 = δi,j , satisfying span{β

(k)
i }k

i=1 = Vk. Thus,

Eq. (1) can be recast in the fashion

f (k) =

k∑

i=1

αli〈β
(k)
i , f〉 = P̂Vk

f, (2)
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where P̂Vk
is the orthogonal projector operator onto Vk. This

is the Least Square (LS) approximation of f in Vk because

it minimises the square distance ||f − f (k)||2. Nevertheless,

finding the subspace Vk for which the k-term approximation

of f is optimal in the LS sense is a NP-hard problem. In prac-

tice it is often addressed by heuristic selection criteria which

are only stepwise optimal.

Consider for instance the problem of deciding how effec-

tively interchange an element in (1) with an element from D
so as to produce an improved k-term approximation of f . In

order to use the LS selection criterion to eliminate an atom

αlj from (1) we should find the index j for which the quantity

qi =
|ci|

2

||β
(k)
i ||2

, i = 1, . . . , k (3)

is minimised [10]. Les us denote Vk\j to the subspace arising

by removing the atom αlj from Vk, i.e.,

Vk\j = span{αl1 , . . . , αlj−1
, αlj+1

, . . . , αlk}.

The LS selection criterion of the atom to replace αlj , that we

call OOMP criterion, entails to find (for ||νn|| �= 0) the index

in I for which the functional

en =
|〈νn, f〉|2

||νn||2
, νn = αn − P̂Vk\j

αn, (4)

is maximised. Here P̂Vk\j
is the orthogonal projector onto the

subspace Vk\j . It is appropriate to point out that the OMP

criterion would maximise |〈νn, f〉|2 instead of en.

Since it readily follows [11] that

P̂Vk\j
αn = P̂Vk

αn −
β

(k)
j 〈β

(k)
j , αn〉

||β
(k)
j ||2

, (5)

the computation of the sequence νn in (4) is a simple opera-

tion provided that P̂Vk
and β

(k)
j are available.

We call backward step to the process of eliminating one

atom from (1) and forward step to the process of adding one

atom in (1). The implementation details to realise both steps

are given in [11] and the corresponding MATLAB codes are

available at [15].

The refinement of OMPS we proposed in [11] consists of

swapping of pairs of atoms realised by consecutive backward

and forward steps which are executed at the end of an OMP

method. The aim of the present effort is to show that the gen-

eralisation of the swapping procedures to involving, say r,

backward steps followed by r forwards steps (or vise versa)

with r ranging from 1 to a fixed value, may produce a signifi-

cant gain in the sparseness of the representation without much

increase of complexity.

In order to study the results produced by this approach

we implement the r backward and forward movements for

r = 1, . . . , rmax. For each r the backward and forward oper-

ations are repeated until the whole process, if performed once

Algorithm 1 Sketch of the algorithm for backward and for-

ward movements.
Apply OOMP method to choose k atoms approximating f

ε0 = ||f − f (k)||2

for r = 1 : rmax

Reset variables to the OOMP output

ε′r = ε0

repeat
εr = ε′r
for s = 1 : r

Calculate the functional qi {cf. Eq. (3)}
j = arg mini qi {Backward LS criterion}
Apply backward step for αlj {see [11, Alg. 1a]}
ε′r = ε′r + qj

end
for s = 1 : r

Calculate the functional en {cf. Eq. (4)}
ns = arg maxn en {Forward LS criterion}
Apply forward step for αns

{see [11, Alg. 2a]}
ε′r = ε′r − ens

end
until ε′r ≥ εr

end
ropt = arg minr εr

more, would not improve the approximation. Out of the re-

sults obtained for the different values of r we select the value

ropt yielding the minimum approximation error. We term the

corresponding solution the best approximation. The opera-

tional steps are sketched in Alg. 1.

We also assess the gain in sparseness for each r-value

by performing some extra backward steps [10] to eliminate

atoms so as to produce an approximation of the same quality

as the one available before the implementation of backward

and forward movements. We term the approximation corre-

sponding to the minimum number of atoms the sparsest ap-
proximation.

3. NUMERICAL SIMULATIONS

We illustrate the proposed approach by using a highly co-

herent cubic B-spline dictionary on the interval [0, 8] which

arises by merging two B-spline dictionaries with prototype

atoms of support 2−2 and 2, respectively, translated by a dis-

tance 2−6. The details on how to construct such dictionaries

are given in [16] and the MATLAB codes available at [15].

The cumulative coherence function, µ1(p), which is equal

to the maximum absolute sum of the inner products between

one atom and p other distinct atoms [14], is plotted in Fig. 1

for p = 1, . . . , 200.

The signals to be approximated are constructed by tak-

ing randomly 200 dictionary atoms and combining them with

random coefficients from [−10, 10]. In this way we generated
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Fig. 1. The cumulative coherence function µ1(p) for the

B-spline dictionary in hand (p = 1, . . . , 200).

1 2 3 4 5
0

5

10

15

20

25

30

Fig. 2. Histogram showing the number of times that the best

approximation occurs for a given value of r (light bars). His-

togram showing the number of times that the sparsest approx-

imation for the given error occurs vs r (dark bars).

100 different signals that we aim at approximating. Since the

signals are restricted to be a linear combination of dictionary

atoms the problem is exact sparse [14]. However, because our

dictionary is highly coherent (see Fig. 1) neither OMP nor

OOMP can find the exact solution. Hence we approximate

each signal by using k = 200 atoms selected by the OOMP

approach. Due to the fact that the approach does not solve the

problem exactly we end with an approximation up to some

error. For each simulation we applied the above described r

backward and forward movements with r = 1, . . . , 5. For

each value of r the light bar in Fig. 2 represents the number

of times that the best approximation occurs for that value of r.

It should be pointed out that although the best approximation

considerably improves the approximation error it is still not

the exact solution.
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Fig. 3. The number of atoms that the sparsest approximation

gains in relation to the OOMP approach.
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Fig. 4. The difference of the number of atoms involved in the

sparsest and least sparse approximations.

The dark bar of Fig. 2 corresponds to the number of times

that after applying some extra backward steps at the end of the

proposed movements, in order to match the OOMP approxi-

mation error, the sparsest approximation for the given error

occurs at the corresponding r-value.

The curve of Fig. 3 plots the number of atoms that the

sparsest approximation gains in relation to the OOMP ap-

proach. Let us remark that in the 100 simulations we have

run the mean value of the gain is 75 atoms. As a measure

of the difference in sparseness that may be obtained by vary-

ing r, the curve of Fig. 4 plots the difference of the number

of atoms involved in the sparsest and least sparse approxi-

mations. It is observed that such a difference is in some cases

significant. In the 100 random simulations we present here the

mean of that quantity is 16 atoms. It appears then that by let-

ting r vary and choosing the best result a significant improve-

ment in sparseness can be achieved. We should stress that the
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proposed strategy does not have a big impact in complexity.

As discussed in [11], the complexity of a backward/forward

swap is roughly twice the complexity of a forward move in

an OMPS. Thus, for each value of r the complexity of r-

backward/forward movements is obtained by multiplying by

r the complexity of a single backward/forward swap. Con-

sidering that these operations are implemented at the end of

OMPS and are guaranteed to improve upon that output, we

understand that the increment in complexity is not very sig-

nificant in relation to the complexity of OMPS.

4. CONCLUSIONS

A generalisation of a recently introduced refinement of OMPS

has been considered. The new strategy is based on inter-

changes of r atoms in an atomic decomposition with r dictio-

nary atoms. The previous refinement is recovered by fixing

r = 1. However, as was shown here, by letting r range from

one to a fixed value rmax a significant gain in sparseness can

be achieved. In order to stress this point 100 random simu-

lations have been performed. It was found that by the spars-

est approximation a mean value of 75 atoms can be saved

to produce an approximation equivalent to that of OOMP.

This result is impressive, considering that in all the signals

the OOMP approach involves 200 atoms.

From our experiments is not possible to discriminate a

universal optimum value for r. Moreover, it is appropriate

to remark that there is not theoretical reason for the existence

of such universal value. Our proposal is then to allow r range

between one and some maximum value rmax in order to dis-

criminate the optimal value for the particular situation. This

implies an increment of complexity of approximately rmax

times the complexity of the previous refinement correspond-

ing to rmax = 1.

Finally we would like to remark that, although the pro-

posed r backward and forward movements could be imple-

mented at any stage of the OOMP approach, we propose to

realise the movements at the end of the OOMP process to be

able to guarantee an improvement on OOMP if some move-

ments can be realised.
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