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ABSTRACT

We consider linear regression under a model where the parameter
vector is known to be sparse. Using a Bayesian framework, we
derive a computationally efficient approximation to the minimum
mean-square error (MMSE) estimate of the parameter vector. The
performance of the so-obtained estimate is illustrated via numerical
examples.

1. INTRODUCTION

1.1. Problem Formulation

Consider the linear regression model

y = Xh + e (1)

where h is a parameter vector of length n, y is an N -vector of ob-
servations, X is a known N × n regressor matrix, and e is a vector
of noise. The task is to estimate h, given that y was observed.

As is well-known, the least-squares (LS) estimate of h is given
by the minimizer of ‖y − Xh‖2 with respect to h, i.e., (see [1], for
example):

ĥLS = (XT
X)−1

X
T
y. (2)

If the noise is zero-mean, white and Gaussian, then the LS estimate
coincides with the maximum-likelihood (ML) estimate [1]. Here-
after, we shall assume that e ∼ N(0, σ2I).

The LS estimate is commonly used owing to its simplicity and
its connection to ML. However, if something is known about h a
priori (before the data are collected), then one can do better than
the LS estimate. For example, if one knows that h ∼ N(0, γ2I)
a priori, then the estimate of h which has the smallest mean-square
error (MSE, E[‖ĥ − h‖2]) is given by the conditional mean of h

given that y was observed [1]:

ĥMMSE = E[h|y] = γ2
X

T (γ2
XX

T + σ2
I)−1

y. (3)

(Note that when γ2 → ∞, corresponding to the observer having no a
priori knowledge of h, then the MMSE and LS estimates coincide.)

Generally, the minimum MSE (MMSE) estimate is better (in the
MSE sense) than the LS estimate,1 owing to the influence of the a
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1Unlike the LS estimate, however, the MMSE estimate is biased.

priori knowledge of h. We now ask the question: If h is known to
be sparse, that is, some elements of h are likely to be equal to zero,
can we do even better than the above MMSE estimate? And if so,
how much better can we do?

1.2. Related Work on Regression with Sparse Models

Linear regression for sparse models has been studied before, both in
the statistics community and in the signal processing literature. The
main approaches that we are aware of include the following:

1. The Lasso method [2] estimates h by minimizing the LS crite-
rion ‖y − Xh‖2 subject to a L1-norm constraint on the parameter
vector. More specifically, Lasso finds h via:2

ĥLasso = arg min
h

‖y − Xh‖2 subject to
n−1∑
j=0

|hj | ≤ c. (4)

The parameter c is a user parameter. Although it is perhaps not im-
mediately apparent, using a small enough value for c typically leads
to a sparse parameter vector estimate. That is, the estimated h will
have many of its coefficients equal to zero. Lasso requires that the
parameter c is chosen by the user, or “estimated” from the data in
some way. This is a non-trivial task which is discussed in [2].

There also exist other more recent methods related to Lasso,
such as Forward stagewise regression and Lars (Least angle regres-
sion) [3]. They also require the choice of a user parameter like c.

2. Another approach [4] (see also [5]) is to compute a Bayesian
estimate of h assuming an a priori density on h which encourages
sparseness. Typically, this prior distribution has a sharp peak at zero.
A specific example of such a prior is

p(h) ∼ exp

(
−

n−1∑
j=0

|hj |p
)

(5)

where p, 0 < p ≤ 1, is a user parameter to be chosen.

3. In [6] the authors suggested to estimate h via3

ĥp-norm = arg min
h

(‖y − Xh‖p + λ‖h‖p) (6)

where λ and p are user parameters. (We note the similarity to (4).
Like for Lasso, the criterion (6) effectively favors sparse parameter

2Notation: here hj is the jth element of h.
3Here, ‖ · ‖p stands for the Lp-norm.
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vectors h. However, Lasso is not a special case of (6).) The user
parameter λ balances the conflicting objectives of minimizing the
residual (this requires a small value of λ) and obtaining an estimate
with a sparse structure (this calls for a large λ).

The above methods allow (or in some applications even assume,
see [7] for a suggestion similar to (6)) the linear regression problem
to be overcomplete, that is n > N .

We note that none of the methods above has any clear connec-
tions to the sparseness structure of the model in terms of the prob-
ability of a given coefficient being equal to zero. The goal of this
paper is to present an estimator for which this connection is explicit.

1.3. Contribution of This Work

We propose a method for computing the MMSE parameter vector
estimate under the explicit a priori assumption that a given coeffi-
cient of h is equal to zero with a certain probability. The method
is computationally very efficient (typically, a 50 × 10 regression
model takes about 15 ms on a standard desktop PC). Our method
is Bayesian, and as such it requires certain a priori assumptions.
Specifically, in addition to the variances σ2 and γ2, the algorithm
takes as input the probability p, which describes how likely it is (be-
fore the data are observed) that any given coefficient of h is equal to
zero. The a priori parameters required by the algorithm have clear
and unambiguous interpretations, and are explicit in the estimator
and its derivation. Also, by varying these parameters one can directly
study how the estimates are affected. It turns out that the estimator
is relatively insensitive to the choices of p, σ2, γ2. See Sections 2.3
and 3 for a further discussion of the role of the a priori parameters.

2. THE MMSE ESTIMATE UNDER A SPARSENESS
CONSTRAINT

2.1. Model

We shall assume that h has a sparse structure which can be described
as a mixture of 2n components, H0, ..., H2n−1. That is,

p(h) =

2n
−1∑

i=0

p(h|Hi)P (Hi).

For each mixture component Hi, a subset of the coefficients of h

is constrained to zero and the other coefficients are i.i.d. random
variables. Specifically,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H0 : h0, ..., hn−1 i.i.d. N(0, γ2)

H1 : h0 = 0; h1, ..., hn−1 i.i.d. N(0, γ2)

H2 : h1 = 0; h0, h2, ..., hn−1 i.i.d. N(0, γ2)
...
Hn : hn−1 = 0; h0, ..., hn−2 i.i.d. N(0, γ2)

Hn+1 : h0 = h1 = 0; h2, ..., hn−1 i.i.d. N(0, γ2)

Hn+2 : h0 = h2 = 0; h1, h3, ..., hn−1 i.i.d. N(0, γ2)
...
H2n−1 : h0 = ... = hn−1 = 0.

(7)

Each mixture component has an associated probability P (Hi). Nat-
urally, these probabilities sum to one:

2n
−1∑

i=0

P (Hi) = 1.

If the coefficients of h are independent and equal to zero with
probability p (an assumption which is common to make in practice,
but which is not necessary for the analysis to come), then we have

P (H0) =(1 − p)n

P (H1) =p(1 − p)n−1

P (Hn+1) =p2(1 − p)n−2

...

P (H2n−1) =pn.

The probabilities {P (Hi)}, as well as {γ2, σ2}, are assumed to
be known, or at least they are set to something sensible. Typically,
like in all Bayesian inference, the priors are set to the best “belief”
one has before the data are observed (see Section 2.3).

2.2. Computing the MMSE Estimate

The task we want to tackle is that of computing the MMSE estimate
of h, given y, under the mixture model (7). This is equal to the
conditional mean, ĥMMSE = E[h|y]. We have

ĥMMSE = E[h|y] =

2n
−1∑

i=0

P (Hi|y)E[h|y, Hi]. (8)

In principle, the sum in (8) can be computed (assuming we can cal-
culate its terms). The difficulty is that for large n, the number of
terms can be unbearably large (as they grow exponentially with n),
and the computational complexity may become unreasonable.

In order to approximate (8) to obtain a computationally feasible
expression, we note that the terms E[h|y, Hi] should be of the same
order of magnitude, at least for the values of i for which P (Hi|y)
is significantly different from zero. Therefore, the weighted sum is
dominated by the terms for which P (Hi|y) are large, and a good
approximation to the MMSE estimate can be obtained by truncating
the sum in (8).

Let Ω be the set of indices i for which P (Hi|y) are significant,
and then normalize P (Hi|y) for i ∈ Ω so that they add up to one.
Then we arrive at the following approximation to (8),

ĥMMSE ≈ ˆ̂
hMMSE �

1∑
j∈Ω P (Hj |y)

∑
i∈Ω

P (Hi|y)E[h|y, Hi]. (9)

By Bayes’ rule, we have

ˆ̂
hMMSE �

1∑
j∈Ω p(y|Hj)P (Hj)

∑
i∈Ω

P (Hi)p(y|Hi)E[h|y, Hi].

(10)
In order to evaluate (10), what remains is the following: (1) To com-
pute p(y|Hi), (2) to compute E[h|y, Hi], and (3) to invent a mech-
anism for selecting Ω. Before we proceed with these tasks, let us
introduce the following notation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj : jth column of X

Γi : the set of indices j for which hj are constrained
to zero under Hi

h̄i : h with the elements corresponding to Γi removed
X̄ i : X with the columns with indices in Γi removed
h̃i : h with the elements not in Γi removed (i.e., the

opposite of h̄i).
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2.2.1. Computation of p(y|Hi)

Conditioned on Hi, we have that hj = 0 for j ∈ Γi and hj i.i.d.
N(0, γ2) for j /∈ Γi. Then,

y|Hi ∼ N(0, Qi)

where

Qi = γ2
∑
j /∈Γi

xjx
T
j + σ2

I = γ2
X̄ iX̄

T
i + σ2

I .

So,

p(y|Hi) =
1√
2π

N

1

|Qi|1/2
exp

(
−1

2
y

T
Q

−1
i y

)
. (11)

2.2.2. Computation of E[h|y, Hi]

It is sufficient to find E[h̃i|y, Hi] and E[h̄i|y, Hi], because h is
composed of h̃, h̄. Clearly

E[h̃i|y, Hi] = 0 (12)

since the elements of h̃i are constrained to zero under Hi. We must
now find E[h̄i|y, Hi].

Under Hi, h̄i and y are jointly Gaussian as follows[
y

h̄i

]
|Hi ∼ N

(
0,

[
Qi γ2X̄ i

γ2X̄
T
i γ2I

])
.

Applying a standard result (Theorem 10.2 of [1], for example), the
conditional mean evaluates to

E[h̄i|y, Hi] = γ2
X̄

T
i Q

−1
i y. (13)

2.2.3. Selection of Ω

We now have the ingredients of the sum in (10); namely, equations
(11), (12) and (13). What remains is to select the subset of Hi, over
which the sum in (10) should be computed. We propose a strategy,
based on successive model reduction, which results in the following
algorithm:

1. Start with i = 0; i.e., consider H0.

2. Compute the contribution of Hi to (10).

3. Find out what coefficient hj would reduce P (Hi|y) by the
least amount, if it were constrained to zero. That is, evalu-
ate P (Hk|y) for all Hk which can be obtained from Hi by
constraining one more coefficient to zero. Then eliminate this
coefficient from consideration; i.e., let i := k.

4. If i = 2n − 1 (this must happen after n iterations), then com-
pute the contribution of Hi to (10) and terminate. Otherwise,
go to 2.

2.3. Discussion of the a Priori Assumptions

We have assumed that p, γ2, σ2 are known. In principle, nothing
prevents the user from “estimating” these parameters from the data.
Doing so would give an “empirical Bayesian” estimate [8]. How-
ever, we refrain from this as we believe that “automatic” procedures
for choosing user parameters are often influenced by hidden assump-
tions. Furthermore, if one accepts the Bayesian philosophy one can
argue that by definition, p, γ2, σ2 are a priori parameters and should

therefore not depend on the observations: estimating p, γ2, σ2 from
the data would void the optimality (in the Bayesian MMSE sense)
of the method. One could, however, eliminate the explicit depen-
dence of the estimates on p, γ2, σ2 within the Bayesian framework
by treating these as random variables with certain (non-informative)
a priori distributions. Doing so would likely lead to an estimator
which is computationally difficult to compute (possibly Monte Carlo
methods [9] could be used).

3. NUMERICAL EXAMPLES

We consider a relatively well-conditioned regressor matrix. Specif-
ically, we let the elements in X be i.i.d. samples from a N(0, 1)
distribution. X is set to be of dimensions 50 × 10 (i.e., N = 50,
n = 10). We compare the new sparse MMSE estimator (9) to the
conventional LS estimate (2) and the MMSE estimate (3). Unless
specified otherwise, we supply the estimators with the true values of
p, γ2 and σ2, set to p0 = 0.5, γ2

0 = 1 and σ2
0 = −15 dB, respec-

tively.
We also compare with the Lasso method [2]. For this compari-

son, we used the official implementation of Lasso [10]. The routines
in [10] were used to automatically choose c.

The methods are evaluated via Monte-Carlo simulations. As
performance measure we use the empirical MSE of the parameter

estimates, MSE = M−1 ∑M
m=1 ‖ĥ

(m) − h(m)‖2, where ĥ
(m)

and
h(m) denote the estimated and true parameter values for realization
number m. M = 10000 is our total number of Monte-Carlo runs.

First, we generated sparse data, using the default parameter val-
ues above, but varying the noise variance σ2

0 . In this example our
estimator is perfectly matched to the data model. Figure 1 shows the
results. Note that the estimator significantly outperforms the Lasso,
LS and the non-sparse MMSE methods.

Next, we study the effect of using an estimator mismatched to
the data. First we vary the sparseness p0 and supply the estimator
with mismatched p-values. The results are shown in Figure 2. To
obtain Figure 3 we vary γ2

0 and use the sparse MMSE estimator with
mismatched γ2-values. In Figure 4 we vary σ2

0 and try estimators
with mismatched values of σ2. We show the performances of the LS
and the Lasso estimators together with three sparse MMSE estima-
tors with different values of the studied a priori parameter.

We see that the proposed estimator is very robust to mismatched
parameter values. Indeed, in Figure 2, the sparse MMSE estimator
outperforms the other estimators except when p0 < 0.1. Figure 3
shows that the estimator is very insensitive to the choice of γ2; even
for severely mismatched γ2-values the estimator still outperforms
the LS and the Lasso estimators. From Figure 4 we again note the
estimator’s robustness against mismatched parameters. If the error in
σ2 is lower than 5 dB, the LS and Lasso methods are outperformed
by the sparse MMSE estimator.

4. CONCLUDING REMARKS

Sparse models have diverse applications. For example, in a statistical
data analysis one may know before the measurement that the data are
likely to be explained by only a few factors. Another instance where
sparse linear models are relevant is the estimation of communication
channel impulse responses [11]. Yet another application is in wavelet
theory [12].

We derived an approximation to the MMSE estimate for a lin-
ear regression model under a sparseness assumption. The estimate
shows good performance, it is computationally efficient and it is very
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Fig. 1. Performance example: Matched estimator, p0 = p = 0.5.
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Fig. 2. Performance example: p-mismatch.

robust to mismatches in the a priori assumptions. An implementa-
tion of the estimator (in C++) can be obtained from [13].
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