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ABSTRACT
The problem of composite hypothesis testing where the probability
law governing the generation of the free parameter is not explicitly
known is considered. It is shown that unlike the Neyman-Pearson
(NP) approach, the competitive NP (CNP) approach models incom-
plete prior information about the source into the detector design by
setting a variable upper bound for the probability of false-alarm term.
Further, the CNP and NP approaches are employed to develop the
CNP and NP detectors for voice activity detection (VAD), where the
prior SNR is shown to be the free parameter of the composite hy-
pothesis. We test the CNP and NP detectors using speech samples
from the SWITCHBOARD database which are suitably corrupted
using different noises and various SNRs. Our simulation results
show that the CNP detector outperforms its NP counterpart and is
comparable to the adaptive multi-rate (AMR) VADs.

1. INTRODUCTION

In the composite hypothesis testing problem, the source output is a
parameter θ ∈ Θi generated by the hypothesis Hi, i=0,1 where Θi

is the parameter set corresponding to Hi. The union of the parameter
sets, Θ0 ∪ Θ1 = Θ gives the parameter space and a probability
density function (pdf) pθ maps Θ onto the observation space Z. A
decision rule splits the observation space into two complementary
subspaces, Z0 and Z1 such that Z0∪Z1 = Z where the observation
Z ∈ Zi implies that the decision is made in the favor of hypothesis
Hi [1].

The popular design methodologies for hypothesis testing are the
Neyman-Pearson (NP) approach and the Bayes criterion. Both tech-
niques result in a likelihood ratio test (LRT) where the likelihood
ratio (LR) is compared with a threshold [1], i.e.,

Λ �
pz|H1

(Z|H1)

pz|H0
(Z|H0)

≥
<

H1

H0
γ, (1)

where Λ is the LR, γ is the threshold and pz|Hi
is the conditional

pdf of the observation Z. The error probabilities associated with
hypothesis testing are the probability of false-alarm Pf , where H1 is
chosen while H0 is true, and the probability of miss-detection Pm,
where H0 is chosen while H1 is true . [1, 2], i.e.,

Pf (γ|θ) � pθ(Z ∈ Z1|θ),

=

� ∞

γ

p(Λ|H0, θ)dΛ, (2)

Pm(γ|θ) � pθ(Z ∈ Z0|θ),

=

� γ

−∞

p(Λ|H1, θ)dΛ, (3)

where p(Λ|H0, θ) and p(Λ|H1, θ) are the conditional pdfs of the
LR. The overall error probability Pe(γ|θ) of the test is given by [2]:

Pe(γ|θ) � P (H1)Pm(γ|θ) + P (H0)Pf (γ|θ), (4)

where P (Hi) is the prior probability of the hypothesis Hi. The NP
approach chooses a γ which minimizes Pm while constraining Pf ,
i.e.,

min
γ

Pm(γ|θ),

Pf (γ|θ) ≤ λ, (5)

where λ is a constant and the detector hence obtained is termed as
the NP detector. Similarly, the Bayes criterion minimizes the total
error probability,

min
γ

Pe(γ|θ). (6)

which yields the Bayesian detector.

2. COMPETITIVE NEYMAN-PEARSON APPROACH

The competitive Neyman-Pearson (CNP) is a modification over the
basic NP approach where the constraint over hypotheses testing is
formulated as, [2]:

min
γ

Pm(γ|θ),

Pf (γ|θ) ≤ λ(θ), (7)

where unlike the NP, CNP approach constrains Pf with a variable
upper bound. In order to show that the CNP approach models prior
information, we express the prior probabilites as:

P (Hi) =

�
Θi

P (Hi|θ)p(θ)dθ,

where p(θ) is the pdf of the parameter θ. Using the Bayes rule, the
above expression is rewritten as:

P (Hi) =

�
Θi

p(θ|Hi)P (Hi)dθ.

Using the above expression in (4), along with the expressions for Pf

and Pm in (2) and (3), we get:

Pe(γ) =
�

i=0,1

�
Θi

p(θ|Hi)P (Hi)dθ

�
Λi

p(Λ|Hi, θ)dΛ,
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where Λ1 = {Λ : Λ ≥ γ}, Λ0 = {Λ : Λ < γ}. Now, the above
expression is simplified as:

Pe(γ) =
�

i=0,1

P (Hi)

�
Λi

�
Θi

p(Λ|Hi, θ)p(θ|Hi)dθdΛ. (8)

In some practical problems, the probability law governing the gen-
eration of θ from the source, p(θ|Hi) is completely known and the
composite hypothesis problem is easily reduced to a simple hypothe-
ses problem [1, 2], i.e.,

Pe(γ) =
�

i=0,1

P (Hi)

�
Λi

�
Θi

p(Λ, θ|Hi)dθdΛ,

=
�

i=0,1

P (Hi)

�
Λi

p(Λ|Hi)dΛ,

= P (H1)Pm(γ) + P (H0)Pf (γ),

where the last equation represents the Bayes error for a binary hy-
pothesis. It is noted that the error terms Pm, Pf and Pe in the last
expression are independent of the parameter θ. However, a straight-
forward design for hypothesis testing does not exist if θ is generated
by an unknown pdf or if θ is non-random, as the parameter θ can no
longer be removed via the integration [1]. Alternatively, we could
work with the conditional error term which is obtained by multiply-
ing and dividing the expression in (8) by p(θ), i.e.,

Pe(γ) =
�

i=0,1

P (Hi)

�
Λi

�
Θi

p(Λ|Hi, θ)p(θ|Hi)
p(θ)

p(θ)
dθdΛ,

=

�
Θi

{
�

i=0,1

P (Hi)

�
Λi

p(Λ|Hi, θ)
p(θ|Hi)

p(θ)
dΛ}p(θ)dθ,

where the term inside the paranthesis {.} is the conditional error
term Pe(γ|θ), i.e.,

Pe(γ|θ) =
�

i=0,1

P (Hi)

�
Λi

p(Λ|Hi, θ)
p(θ|Hi)

p(θ)
dΛ,

=
�

i=0,1

P (Hi)
p(θ|Hi)

p(θ)

�
Λi

p(Λ|Hi, θ)dΛ,

=
P (H1)p(θ|H1)Pm(γ|θ)

p(θ)
+

P (H0)p(θ|H0)Pf (γ|θ)

p(θ)
.

In the above expression, the first and second terms represent the con-
tributions to the overall error due to miss-detection and false-alarm
respectively. If we minimize the error due to the first error term while
constraining the second error term by a constant value λ, we get:

min
γ

P (H1)p(θ|H1)Pm(γ|θ)

p(θ)
, (9)

P (H0)p(θ|H0)Pf (γ|θ)

p(θ)
≤ λ. (10)

The terms in (9) which do not contain γ can be removed from the
minimization. Further, the inequality in (10) may be rewritten as:

Pf (γ|θ) ≤
λp(θ)

P (H0)p(θ|H0)
, (11)

where λ′ = λ
P (H0)

is a constant, and the minimization and constraint
conditions in (9) and (10) can be rewritten in a simplified form as:

min
γ

Pm(γ|θ), (12)

Pf (γ|θ) ≤ λ
′ p(θ)

p(θ|H0)
. (13)

Now, if θ is independent of Hi, then p(θ|H0) = p(θ) and the RHS
in (13) reduces to only λ′ which makes the minimization-constraint
conditions similar to the NP approach given in (5). On the other
hand, if there is a dependency between θ and Hi then the RHS in (13)
becomes a function of θ, i.e., λ′(θ) which makes the minimization-
constraint conditions similar to the CNP approach given in (7). Hence,
it is easily noted that the CNP approach models the dependency be-
tween the parameter and the hypothesis by defining an upper bound
on Pf which is a function of the parameter itself. In other words,
Pf must take on different values with varying θ to maintain the con-
straints of the CNP approach. The need to employ the CNP approach
arises in many practical situations, where partial knowledge about
the source exists in form of a general relationship between θ and the
underlying hypothesis Hi. For instance, in a radar-detection prob-
lem where a higher value of SNR may be more suggestive of signal
presence than lower SNR it may be necessary to vary Pf with the
signal to noise ratio (SNR) [2].

In this paper, we use a different technique in designing the CNP
LRT where we do not explicitly determine λ′(θ) in (13). Instead we
define an arbitary probability term Pa which is related to Pf as:

Pa(γ′|θ) =

� ∞

γ′

p(Λ|H0, θ)dΛ, (14)

where the curve γ′ is a function of θ, and a one to one mapping
exists between the threshold γ and γ′. If the curve γ′ is appropriately
chosen, it yeilds a desirable variation in Pf with varying θ, which is
shown below by rewriting the above expression as:

Pa(γ′|θ) =

� γ

γ′

p(Λ|H0, θ)dΛ +

� ∞

γ

p(Λ|H0, θ)dΛ,

where the second term of the RHS in the above expression is Pf .
Hence, the above expression may be rewritten as:

Pa(γ′|θ) =

� γ

γ′

p(Λ|H0, θ)dΛ + Pf (γ|θ),

Pf (γ|θ) = Pa(γ′|θ) +

� γ′

γ

p(Λ|H0, θ)dΛ.

In the above expression if γ′ is chosen to keep Pa constant, then
Pf ≤ Pa ∀θ when γ′ ≤ γ, and Pf > Pa ∀θ where γ′ > γ. Hence,
a designer can set different upper bounds for Pf with varying θ by
suitably adjusting the distance between γ′ and γ, and maintaining
γ′ ≤ γ. In addition, one also has the flexibility of setting differ-
ent lower bounds on Pf (or equivalently upper bounds on Pm) by
maintaining γ′ > γ.

3. VOICE ACTIVITY DETECTION

Voice activity detection (VAD) falls under the category of the signal
in noise problem, i.e.,

H0 : Z = N

H1 : Z = S + N,
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where S = [s1, s2, ..., sN ], N = [n1, n2, ..., nN ] and Z = [z1, z2, ..., zN ]
are the N-length speech, noise and observation vectors. We use
the modified Ephraim-Malah (EM) model for the binary hypothe-
sis where the observation Z are N-point independent mel-frequency
spectral coefficients (MFSC) and are assumed to be Gaussian dis-
tributed with zero-mean [3], i.e.,

H0 : Z ∼ N(0, Kn)

H1 : Z ∼ N(0, Kz),

and the general form of the detector is given as, [1]:

Z(Kn
−1 − Kz

−1)ZT

2
≥
<

H1

H0
ln(η) +

1

2
ln

|Kz|

|Kn|
(15)

where η is the Bayesian threshold, |.| is the determinant, and Kz

and Kn are the covariance matrices of the noisy speech (S + N)
and noise (N). Further, the estimates of the covariance matrices are
obtained as per the convex combination rule where Kn and Kz are
updated during noise and noisy speech periods only, respectively [3].

The sufficient statistics (l) of the test (LHS in (15)) is a speech
energy estimator and this is shown by defining a transformation Q

such that Q simultaneously diagonalizes Kn and Kz, i.e.,

Q
T
KnQ = I (16)

Q
T
KzQ = Λ (17)

where I is the identity matrix and Λ is an eigenvalue matrix whose
ith eigenvalue is given by λi. It is well known that such a transform
Q exists [4]. Now, let F = ZQ be the transformed observation and
the detector in the domain of Q is obtained by rewriting the SS in
(15) as:

l =
FQ−1(Kn

−1 − Kz
−1)(Q−1)T FT

2
,

=
F(Q−1Kn

−1(Q−1)T − Q−1Kz
−1(Q−1)T )FT

2
,

=
F(I−Λ−1)FT

2
, (18)

and the above expression may be rewritten in scalar form as:

l =
1

2

m�

i=1

(1 −
1

λi

)f2
i (19)

where fi is the ith element of F. On the lines of Ephraim and Malah,
we define the ith posterior (γi) and prior (ζi) SNR as [5],

γi = λi, (20)

ζi = λi − 1, (21)

and rewrite l in (19) using the above definitions of the prior and
posterior SNR as:

l =
1

2

m�

i=1

(
ζi

ζi + 1
)f2

i . (22)

The above expression shows that l estimates the proportion of speech
energy along the ith eigenvector on the basis of the prior SNR es-
timate, which also forms the parameter of the composite hypothesis
(θ). If ζi is low indicating low prior SNR, then l value is low too
indicating low speech energy in the noisy signal and vice versa. The
estimates of ζi are obtained from long-term data itself and given that

we obtain reliable estimates, the value of ζi is itself strongly sugges-
tive of presence of speech. In other words, it is reasonable to assume
that a high value of ζi is more likely to be associated with the ‘speech
hypothesis’ than ‘pause hypothesis’ and vice-versa. Alternatively, a
general relationship between the prior SNR and the hypothesis ex-
ists and a CNP approach must be used to build the VAD. For a low
value of prior SNR which is suggestive of pause, the detector must
be biased towards H0 by using a low and high value of Pf and Pm

respectively. Alternatively, the detector must be biased towards H1

at high prior SNR where a high Pf and low Pm must be obtained.

The expressions for Pf and Pm are necessary in order to de-
velop a CNP detector. It can be shown that the conditional pdfs of
the SS, p(l|H0) and p(l|H1) are Gaussian distributed as the SS is a
weighted sum of independent and identically distributed (i.i.d) ran-
dom variables. Hence, using (2) and (3) the expressions for Pf and
Pm are obtained as:

Pf = 1 − erf(
γ − E[l|H0]�

V ar[l|H0]
) (23)

Pm = erf(
γ − E[l|H1]�

V ar[l|H1]
) (24)

where erf(.) in the standard error function [3], E[.] and V ar[.] are
the mean and variance and the expression for the conditional statis-
tics of l can be computed using (19). Now, the NP threshold is easily
computed using the expression for Pf in (24) as:

γNP =
�

V ar[l|H0]erf
−1(1 − Pf ) + E[l|H0]. (25)

where erf−1(.) is the inverse of the standard error function. In order
to obtain the CNP detector with the desired trend in Pf and Pm with
varying prior SNR, we propose the following expression for γ′:

γ
′ =

�
V ar[l|H0](

ln η

d × S(ζ)
+

d

2
) + E[l|H0], (26)

where d is the normalized distance term indicative of the separability
of the hypotheses [1,3]. S(ζ) is similar to the sigmoid function, i.e.,

S(ζ) = 2 −
2

1 + exp(−ζ)
, (27)

where ζ is the average value of prior SNR,

ζ =
1

N

N�

i=1

ζi. (28)

Using the above expression for γ′ in (14), we get:

ln(η) = S(ζ)(d × erf
−1(1 − Pa) −

d2

2
), (29)

and adding the term 1
2

ln |Kz|
|Kn|

on both sides, we get the CNP thresh-
old as:

γCNP = S(ζ)(d × erf
−1(1 − Pa) −

d2

2
) +

1

2
ln

|Kz|

|Kn|
. (30)

We plot the variation in Pm and Pf with changing prior SNR
for the CNP, NP and Bayesian detectors in Fig. 1. It can be observed
that while all detectors achieve the ideal trend for Pm with changing
prior SNR, only the CNP detector achieves the ideal behaviour for
Pf . Further the role of S(ζ) in (30) is also demonstrated where a
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Fig. 1. Variation of Pf and Pm with varying prior SNR in dB for
(a),(b) Bayesian (c),(d) NP (e),(f) CNP with ζ = -5 dB and (g)(h)
CNP with ζ = 5 dB.

lower value of average prior SNR (ζ = −5dB ) gives a stronger
bias towards H0 in Fig. 1 (e), (f) when compared to 1 (g), (h) where
the average prior SNR is higher (ζ = 5dB).

4. RESULTS AND DISCUSSION

We test the CNP LRT using a set of 21 speech samples of one minute
duration each from the SWITCHBOARD database. The speech sam-
ples are corrupted using babble, car, F-16 cockpit and tank noise
from the NOISEX database to create noisy speech signals of -10,
0, 15 and 30 dB SNR. In Fig. 2, the overall percentage detection
for the CNP, NP and Bayesian detectors is shown and compared to
the adaptive multi-rate (AMR) VAD 1 and 2 [3]. We also show the
performance of a comprehensive VAD scheme which is formed by
combining the CNP detector with the contextual detector which was
developed in a earlier work [3]. As expected, all VAD schemes show
good performance in high SNR and particularly in the case of car
noise, the results for all detectors are good across all SNRs. In other
cases, the CNP detector is seen to consistently perform better than
its NP and Bayesian counterparts with the biggest improvements at
intermediate SNRs. The CNP detector and the comprehensive VAD
scheme are impressive in babble noise where they outperform other
VADs by a big margin.

5. CONCLUSION

In this paper, we have shown that incomplete prior information in
form of a general relationship between the free parameter and the
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Fig. 2. Overall percentage detection for CNP, NP, Bayesian and
Comprehensive VAD compated to the AMR VAD algorithm 1 and
2 for speech corrupted at different SNRs using (a) babble (b) car (c)
F-16 cockpit and (d) tank noise.

hypothesis in composite hypothesis testing can be modeled using
the CNP approach. Our approach of designing the CNP detector
gives an added advantage of defining an upper as well as a lower
bound for Pf with different values of the free parameter, where the
detector behavior adapts with the value of the free parameter. The
superiority of the CNP approach over the NP was established in the
context of voice activity detection where Pf and Pm varying with
SNR is desirable.
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