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ABSTRACT
A goal in functional Magnetic Resonance Imaging (fMRI)

data analysis is determining whether a certain region of brain

is activated by presented temporal stimuli. Since the fMRI

data is a sequence of images, spatiotemporal models are needed

and spatially and temporally correlated noise plays a crucial

role in the models. Until very recently, most attention has

focussed on temporally correlated but spatially independent

models. And spatial correlation has been dealt with in an ad

hoc fashion. We develop, for the first time, a properly formu-

lated true spatiotemporal detection statistic based on a spa-

tially and temporally correlated noise model. Additionally,

we develop a theoretical performance analysis method for

comparing different test statistics through Asymptotic Rela-

tive Efficiency (ARE) for the first time in fMRI. We perform

simulations for the comparison of new test statistic with a

standard statistic as well.

1. INTRODUCTION

Functional Magnetic Resonance Imaging is the technique

to investigate functional activity in the human brain by means

of Nuclear Magnetic Resonance (NMR). NMR can capture

the change of blood flow as a result of the local neuronal ac-

tivity in response to a given temporal stimulus resulting in

digital image contrasts. This is due to the fact that the local

change of oxygenation levels of hemoglobins makes the local

change of magnetic properties in the brain. In a typical fMRI

experiment, a subject in the MR scanner is provided with a

pre-specified temporal stimulus which is a periodic ”on-off”

pattern. During the experiment, images of the brain can be

obtained in rapid succession. For example, to stimulate the

visual cortex, a flickering checkerboard image which is on

for 10 seconds and off for 15 seconds is given to a subject.

The fMRI data available for analysis is spatiotemporal - a se-

quence of three dimensional images. For a given time point,

the data consists of multiple two dimensional slices of sec-

tions of brain taken at different axial coordinates. For a given

voxel, the data is one dimensional time series with a sam-

pling interval ranging from a few hundreds of milliseconds

to several seconds. The observed data at each voxel is a su-

perposition of Blood Oxygenation Level Dependent (BOLD)

response st,v and the brain noise wt,v , where t represents

time index and v means voxel index. The BOLD response

st,v can be thought of as a spatiotemporal response of human

brain to a given temporal stimulus ct. The brain noise wt,v

is composed of hemodynamic fluctuations from unknown ori-

gin, possibly related to physiological background processes in

the brain and cardiac fluctuation, and thermal noise from MR

scanner. Therefore, the noise has spatial and temporal corre-

lations. However, the dominant current approach to modeling

uses a spatial independence assumption. We review details

of that in section 2. Then, we introduce our new detector

statistic based on a spatially and temporally correlated noise

model in section 3. In section 4, newly developed theoretical

performance analysis method is provided based on ARE. We

perform simulations for a comparison of our new test with the

standard T test in section 5.

2. MODELING UNDER SPATIAL INDEPENDENCE

A typical fMRI signal model is

yt,v = mv + bvt + st,v + wt,v, (1)

where t = 1, . . . , T , v = 1, . . . , M , mv is baseline, bvt means

temporal drift, st,v represents BOLD response and wt,v rep-

resents zero mean noise [1]. The drift term bvt is necessary

to model the uncorrected motion artifacts and magnetic field

inhomogeneity. The BOLD response st,v is to model the

brain response to given temporal stimuli in the experiment.

In the parametric approach [2], BOLD response can be sim-

ply represented as st,v = fv(h ∗ c)t with the Hemodynamic

Response Function (HRF) ht and the activation magnitude

fv . For more flexible modeling of HR, FIR model has been

used [3]. The noise wt,v has several sources which can be

the MR scanner and physiological fluctuations. Thus noise

has temporal and spatial correlations. To model the tempo-

ral aspect of the noise, an AR(1) process in white Gaussian

noise has been used, which is equivalent to ARMA(1,1) noise

[1]. Higher order models have also been used [4]. In the past,

several approaches have been proposed to model ht. The sim-

plest approach is a fully specified ht, based loosely on experi-

mental studies, namely ; ht = k t8.6exp(−t/0.546), where k
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is the scaling factor to satisfy
∑

h2
t = 1. FIR approach mod-

els the response as the output of a FIR filter of a given order

excited by the stimulus input. However, typically a FIR filter

with a high order is required [3].

For the modeling of fv , [5] implicitly assumed spatial

continuity and proposed a Gaussian Point Spread Function

(PSF). A likelihood ratio test then leads [6] to a matched fil-

ter involving spatial smoothing. This is a reason that a spatial

smoothing is being used in several softwares to analyze fMRI

data. For example, Statistical Parametric Mapping (SPM) is a

widely used package developed by the Wellcome Department

of Imaging Neuroscience in University College London.

After spatial smoothing, the approach to time series de-

composition at a fixed voxel called univariate analysis method

is built up on the work of several researchers [7]. The assump-

tion of a Gaussian PSF and univariate approach allow Ran-

dom Field Theory (RFT) to be used to control FWE [5]. Al-

though RFT is very complex, it gives an approximate thresh-

old to create an activation map but sometimes shows more

conservative results than Bonferroni correction in the case of

t distributed field with low degrees of freedom [8]. In the

above modeling of fv , the Gaussian PSF implicitly suggests

spatial continuity of the activation which is not supported by

recent empirical work [9]. Besides that, the assumption of

spatial white noise is not reasonable in practice.

Given these drawbacks of the previous approaches, we

propose an empirically more satisfactory model considering

temporal and spatial noise correlations without any specific

assumption on spatial continuity of activation, i.e without a

specific assumption on fv .

3. MODELING WITH SPATIAL CORRELATION :
NEW DETECTOR STATISTIC

For convenience, we ignore the drift term of (1) for a

while. Thus, the model with pre-specified HRF is

yt,v = st,v + wt,v = fvξt + wt,v, (2)

where t = 1, . . . , T , v = 1, . . . , M , ξt = (h ∗ c)t and wt,v

is assumed spatiotemporally stationary Gaussian. The results

from this simplest case (2) can be easily extended to two more

general cases, one of which will be (1). The other exten-

sion is (1) with a FIR model of HRF. We gain considerable

simplification by considering the temporal and spatial corre-

lations of noise in the temporal frequency and spatial wave-

number domains. After taking spatiotemporal DFTs in (2),

we obtain following equivalent model in the DFT domains.
˜̃yk,l = f̃lξ̃k + ˜̃wk,l, where k = 1, . . . , T , l = 1, . . . , M ,

f̃l stands for spatial DFT transformed fv and ˜̃yk,l represents

spatiotemporal DFT transformed yt,v. For large T and M , the

DFT transformed noise ˜̃wk,l obeys CLT [10].

1√
TM

· ˜̃wk,l
i.d.∼ N c(0, Fk,l), (3)

where N c represents Complex Gaussian Distribution (CGD),

i.d. means independently distributed and Fk,l represents spa-

tiotemporal Power Spectral Density (PSD). For simplicity,

we assume space-time separability Fk,l = FkGl, where

Fk = F ( 2πk
T ) is discrete temporal PSD and Gl = G( 2πl

M )
is discrete spatial PSD.

We consider the hypotheses on the activation amplitudes

fv which are equivalent to following hypotheses in the tem-

poral frequency and spatial wave-number domains.

Hnull : f̃l = 0 for all l, (4)

Halter : f̃l �= 0 for some l, (5)

where l = 1, . . . , M . The null hypothesis is that there are no

activated voxels in Region of Interest (ROI). From the above

equivalent hypotheses testing, with separability assumption

and independent CGD in (3), we can develop the new detec-

tor statistic through General Likelihood Ratio Test (GLRT) in

temporal frequency and spatial wave-number domains.

LRT =
1

TM

M∑
l=1

1
Gl

·
∣∣∣∣∣

T∑
k=1

˜̃yk,lξ̃
∗
k

Fk

∣∣∣∣∣
2

·
(

T∑
k=1

|ξ̃k|2
Fk

)−1

, (6)

where ˜̃yk,l represents spatiotemporally DFT transformed yt,v

and ξ̃∗k means the complex conjugate of ξ̃k. From (6), we

obtain an equivalent detector statistic for all voxels in the time

and space domains through Parseval’s theorem. This gives a

voxel-wise statistic, LRT =
∑

v LRTv ,

LRTv =

⎛⎝∑T
t=1 (ξF

t )(yF
t,v ∗ Kv)√∑T

t=1 (ξF
t )2

⎞⎠2

, (7)

where e.g. ξF
t = (g ∗ ξ)t and gt is a causal whitening filter.

gt and Kv have the following relations with each PSD,

gt
DFT←→ g̃k, |g̃k|2 =

1
Fk

, Kv
DFT←→ 1√

Gl

(8)

From (7), we can obtain important interpretations. In de-

tail, our new test statistic shows what kind of temporal and

spatial operations are needed to build up a proper detector

statistic based on the spatiotemporal correlations. First, the

temporal whitening of ξt and data yt,v are necessary. Second,

the application of a spatial whitening kernel to temporally fil-

tered data is needed. Third the cross correlation of spatiotem-

porally whitened data and temporally whitened ξt is required.

Finally, normalization and square of normalized statistic are

needed. Note that the detector is based on reducing yt,v to

spatial and temporal white noise. Here, the idea of temporal

whitening filter was suggested by several researchers in the

univariate approach [8]. However, the idea of spatial whiten-

ing kernel is new. Besides that, we can easily show that spatial

kernel Kv can have negative weights for a simple spatial Au-

toCorrelation Function (ACF). By computing (7) and thresh-

olding using a pre-determined threshold over all voxels within
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ROI, we create an activation map. Under the null hypothesis,

if Fk and Gl are known, we find :

1. (yF
t,v ∗ Kv) is spatially and temporally white noise and

follows standard normal distribution N(0, 1).

2. The test statistics at different voxel locations are inde-

pendent, i.e. LRTp
ind∼ LRTq for all p �= q.

3. Test statistic LRTv ∼ χ2
1.

Since there are many voxels in the collected data, control-

ling overall error rate is a multiple comparison problem. One

of the widely used measures is Family-Wise Error (FWE) rate

which has following definition and equivalent representations

under the null hypothesis.

FWE = Pr

(
M⋃

v=1

{LRTv > γ}
)

= Pr
(
max

v
LRTv > γ

)
,

(9)

where FWE is assigned to a pre-specified significant level α,

typically α is set to 0.05 and γ is threshold to be determined.

Since the exact distribution of our new test statistic LRTv is

known and LRTv is spatially uncorrelated, we can determine

the threshold γ analytically. We can obtain following theoret-

ical threshold for a level α and number of voxels M .

γ(α) = Ψ(χ2
1)

−1 (
M
√

1 − α
)
, (10)

where Ψ(χ2
1)(t) is Cumulative Density Function (CDF) of χ2

1.

We assumed that Fk and Gl are known in this paper. In prac-

tice, however, these are needed estimated based on collected

data. Estimations of Fk and Gl will be covered elsewhere.

In comparison with existing methods, our test statistic in-

cludes a spatial kernel determined by the spatial correlation.

This is totally different from the ad hoc approach of spatial

smoothing with a Gaussian amplitude kernel. In fact, our spa-

tial kernel Kv is more like spatial differentiator, not smoother.

4. ASYMPTOTIC RELATIVE EFFICIENCY

To compare the performance of our new test statistic

LRTv with the standard T test statistic based on voxel time

series in the univariate analysis method, we use Asymptotic

Relative Efficiency (ARE), which is a standard method for

comparing competing test statistics [11]. ARE compares two

tests by measuring the relative sample sizes needed to achieve

the same power given the same significant level. This ap-

plication of ARE is novel in fMRI. Specifically, to test two

different tests, Pitman’s ARE is used with the assumption

of fixed Signal to Noise Ratio (SNR) which is a reasonable

in practice. From model (2), SNR has the following form,

SNR = (fv/σv)
√∑T

t=1 (ξF
t )2, where σ2

v represents the vari-

ance of noise. For a fixed SNR, ξt and σv , fv is shrinking

toward 0 as T increases. By plugging (2) into (7), we ob-

tain the following expression for our test statistic which has a

non-central χ2
1 under the alternative hypothesis.

LRTv =

⎛⎝(K ∗ f)v ·
√√√√ T∑

t=1

(ξF
t )2 + N(0, 1)

⎞⎠2

(11)

where Kv is spatially whitening kernel. Applying General

Linear Model (GLM) to (2) gives the standard T test statistic,

Tv =
∑T

t=1(ξ
F
t )(yt,v ∗ KG

v )F

σ̂S
v ·

√∑T
t=1 (ξF

t )2
, (12)

where ξF
t = (g ∗ ξ)t is temporally whitened ξt, KG

v means

a Gaussian amplitude kernel and σS
v represents the standard

deviation of noise spatially smoothed by KG
v . By plugging

(2) into (12), we obtain the following form which follows a

non-central tT−1 under the alternative hypothesis.

Tv = tT−1

⎛⎝ (KG ∗ f)v ·
√∑T

t=1 (ξF
t )2

σS
v

⎞⎠ , (13)

where the term inside the parenthesis means non-centrality

parameter. Based on (11) and (13), it can be shown following

the procedure in [11] that Pitman’s AREs e(Tv, Lv), where

Lv =
√

LRTv , have the following forms under the assump-

tion of voxel-wise activation and known σv ,

e(Tv, Lv) =
(

KG
0

σvK0

)2 1
VG

, (14)

where VG = V ar(KG
v ∗ wt,v)/σ2

v . Based on the setup of the

simulations given in section 5, the following evaluations can

be shown. In the case of spatially white noise with σ = 1,

we can obtain e(Tv, Lv) = 0.2824. In the case of spatially

colored noise with a known Gaussian ACF, namely γv =
exp(−v2/2.254), we can obtain e(Tv, Lv) = 0.0181. In

the case of spatially white noise and two dimensional slices,

the interpretation of (14) is that asymptotically the standard

Tv test requires about 3.5(= 1/0.2824) times as many sam-

ples as does the new test LRTv . In the case of spatially col-

ored noise, Tv test requires about 55(= 1/0.0181) times as

many samples as does the new test LRTv . These values of

e(Tv, Lv) support the results of simulations performed under

several conditions in Figure 1.

5. SIMULATION RESULTS

A simulation study was carried out to compare the two

test statistics. We use well known Receiver Operating Charac-

teristic (ROC) curves as the performance measure. To specify

the real activation amplitude, voxel-wise activation and ran-

dom shaped region activation with fixed amplitude are used.
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The real random shape activation maps are generated from

two dimensional colored noise. To specify the spatial struc-

ture of noise, both spatially white noise and spatially colored

noise with a known Gaussian ACF are used. Since tempo-

ral whitening is standard in the univariate approach, we as-

sume the noise is temporally white for simplicity. Two dimen-

sional slices are considered for convenience. 100 time points

and 64 × 64 voxels are used. A pre-specified HRF and spa-

tiotemporally stationary Gaussian noise are used. The width

of Gaussian amplitude kernels for spatial smoothing are de-

termined as 2.5 times of voxel size as recommended in SPM.

The threshold for our test statistic is determined by (10) and

the threshold for T statistic is determined by the RFT based

on the above settings. In Figure 1, the new test shows bet-

ter performance than T test for all cases and the new statis-

tic is much better for spatially colored noise case. These are

matched to ARE in section 4. In each graph, the results of

T statistic without spatial smoothing are provided as well.

Note that, since the sufficient smoothness is not guaranteed

without spatial smoothing, we can not control FWE rate with

unsmoothed T test statistic.

6. CONCLUSION

We have built up a new detector statistic considering

temporal and spatial correlations of background noise without

any specific spatial assumption on the real activation ampli-

tude. Using our new test statistic, we controlled FWE exactly

and obtained higher power, which was verified by the analyt-

ical (ARE) and empirical (ROC) comparisons. This idea of

considering the spatial information of noise for building up a

detector statistic gave us insights and advantages. In future

work, we will develop techniques for estimating Fk and Gl as

well as for testing for space-time separability.
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