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ABSTRACT

This paper considers the detection of a Markov signal in additive

white Gaussian noise (AWGN). Here, the Markov signal is taken

to be a certain class of random walk processes. A closed form ex-

pression of the likelihood ratio (LR) is derived for a general Markov

signal in AWGN. Then, under the conditions of low signal to noise

ratio (SNR) and long observation time, necessary conditions are de-

rived for the LR of the random walk to be approximated by a bank

of filtered energy (FE) detectors, as well as by a single FE detector.

The FE detector is an intuitive way to perform detection; however,

it is not necessarily optimal. The results are applicable to the detec-

tion of an electron spin in a magnetic resonance force microscopy

(MRFM) experiment.

1. INTRODUCTION

The detection of a discrete-time Markov signal in AWGN is wide-

spread. Under the null hypothesis, the observations consist of

AWGN, while in the other, they consist of a Markov signal and

AWGN. In [1], the case when the Markov signal is a random tele-

graph process was considered. It was shown that the optimal like-

lihood ratio test (LRT) for the random telegraph model can be ap-

proximated by a FE detector under the following four conditions:

low SNR, long observation time, symmetric transition probabilities,

and small probability of transition between consecutive time sam-

ples. In this paper, an analogous result is derived when the Markov

signal is taken to be a random walk. We derive necessary conditions

for the LRT of a class of random walk processes to be approximated

by a bank of FE detectors and by a single FE detector under the

conditions of low SNR and long observation time.

The results of this paper are applicable to MRFM, where the

detection of a single electron spin can be modelled as the binary hy-

pothesis test considered above. Two models were proposed for the

Markov signal that represents the electron spin: the random tele-

graph and random walk process. Current MRFM single-spin ex-

periments occur in the regime of low SNR and long observation

time [1, 2], which is precisely the regime that is considered in this

paper. In addition, our results can be applied to [3], where the de-

tection of random walks in capital markets is of interest. In [4], the

authors construct a random walk model for the fluctuations in the

sun’s magnetic field. Our results can be applied to determine if the

observations of the sun’s magnetic field does indeed support a ran-

dom walk model.

This work was supported in part by the DARPA Mosaic program under
ARO contract DAAD19-02-C-0055 and by ARO MURI grant W911NF-05-
1-0403.

2. PROBLEM FORMULATION

Let Xi, i = 0, . . . , N − 1 denote a Markov signal with state space
Ψ = {ψ1, . . . , ψd}, where d is the number of possible values that
Xi can assume. Let P = (pjk) ∈ R

d×d be the probability transi-

tion matrix associated with Xi so that pjk = P (Xi = ψk|Xi−1 =
ψj) ∀ 1 ≤ i ≤ N − 1. Define Wi to be AWGN noise with vari-

ance σ2 and yi to be the observations for i = 0, . . . , N − 1. Let
y � [y0, . . . , yN−1]

T , where (·)T is the transpose operator. The

detection problem is to design a test between the two hypotheses

H0 : yi = wi, 0 ≤ i ≤ N − 1

H1 : yi = xi + wi, 0 ≤ i ≤ N − 1 (1)

In this article, we consider the case whenXi is a certain class of

randomwalks. Specifically, we assume that the probability transition

matrixP has the following properties: (A1) it is a tridiagonal matrix;

(A2) pj,j+1pj+1,j > 0 for 1 ≤ j < d; (A3) pjj = 0 for 1 ≤ j ≤ d.
Note that as P is a stochastic matrix, each pjk is a non-negative real

and each row of P sums to 1.
The following notation will be used: for a random variable Z,

fi(Z) denotes the density of Z induced under hypothesis Hi, i =
0, 1. Similarly, let Ei[·] and vari(·) denote the expectation and vari-
ance respectively under hypothesis Hi, i = 0, 1. The definition of
SNR used in this paper is the same as in [1], viz.,

SNR � N

j
−

1

2
log

2
p
var0(Yi)var1(Yi)

var0(Yi) + var1(Yi)

+
(E1[Yi] − E0[Yi])

2

4(var0(Yi) + var1(Yi))

ff
, (2)

which is the α-divergence of the densities f1(y) and f0(y) with α =
1/2. When Yi is not wide-sense stationary, the SNR is a function of

i. In this case, the SNR will be taken to be the steady-state value, i.e.,
SNR � limi→∞ SNRi. The condition of low SNR will be taken to

mean that |ψk/σ| � 1 for 1 ≤ k ≤ d.

3. DETECTION STRATEGIES

3.1. Unfiltered and filtered energy detector

The filtered energy detector is an extension of the unfiltered energy

detector. Consider the unfiltered energy detector: if the signal and

noise are independent, which is the case for the detection problem

considered here, the energy term should be higher under hypothesis

H1 than under hypothesis H0. Now, if the signal Yi is lowpass, an

intuitive way to improve detection performance is to pre-filter the

observations yi with a lowpass filter. Most of the signal would be
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retained, but noise outside of the lowpass filter bandwidth would be

suppressed. Effectively, the SNR is increased. We shall use the same

first-order, single-pole lowpass filter (LPF) as in [1]. Let hLP[i] be
the impulse response of the filter with response

HLP(z) =
1 − αLP

2

1 + z−1

1 − αLPz−1
, (3)

where |αLP| < 1 is required for stability [5]. Let “∗” denote the con-

volution operator, so that s = y ∗ h is defined by si �
P

n ynhi−n.

The filtered and unfiltered energy detectors are given by

X
i

(y ∗ h)2i

H1

≷
H0

η (4)

where, in the former, h[i] = hLP[i] and in the latter, h[i] = δ[i].
Let g be the FE statistic, i.e. the LHS of (4) with h[i] = hLP[i], and

ỹi � yi/σ be the normalized observations. For sufficiently largeN ,
it can be shown that

g ≈ C

8<
:

X
j<k

αk−j
LP ỹj ỹk +

αLP
1 + αLP

X
j

ỹ2
j

9=
; (5)

where C is a constant independent of the observations [1]. Note that
C plays no role in the performance of the FE detector.

3.2. Likelihood ratio test

The LRT is a most powerful (MP) test that satisfies the Neyman-

Pearson criterion: it maximizes the probability of detection (PD)

subject to a constraint on the probability of false alarm (PF ) [6].

One can derive a closed-form expression of the LR for the binary

hypothesis test problem of (1).

We shall adopt notation and terminology that are consistent

with [1, 7]. Let πk, 1 ≤ k ≤ d be the initial probabilities of X0,

and π � [π1, . . . , πd]T . Define ϕ(θ; µ, σ2) � 1√
2πσ

exp[−(θ −

µ)2/2σ2]. For θ ∈ R
d, diag(θ) is the d-by-d matrix with θ along its

diagonal. For 0 ≤ i ≤ N − 1, let yi � [y0, . . . , yi]
T , and

ni � [ϕ(yi; ψ1, σ
2), . . . , ϕ(yi; ψd, σ2)]T (6)

H
(i) � diag(ni)/ϕ(yi; 0, σ2). (7)

For i ≥ 1, let

Ω
(i) � diag(ni)/f1(yi|y

i−1) (8)

l(yi|y
i−1) � f1(yi|y

i−1)/f0(yi|y
i−1) (9)

q
i
� [P (Xi = ψ1|y

i−1), . . . , P (Xi = ψd|y
i−1)]T (10)

Eqn. (9) defines the transition likelihood ratio, and (10) defines the

vector of prediction probabilities.

Proposition 1 The LR for the binary hypothesis test problem of (1)
is

LN = πT
H

(0)
PH

(1)
P · · ·H(N−1)1 (11)

where 1 = [1, . . . , 1]T ∈ R
d, and P is the probability transition

matrix.

The result can be obtained by using [1, (15)] and the fact that

Ω(i) = H(i)(l(yi|y
i−1))−1 for i ≥ 1. It can be shown that

qT

i
= qT

i−1

H(i−1)

l(yi−1|yi−2)
P, i ≥ 2 (12)

The LR isLN =
QN−1

i=1 l(yk|y
k−1)·L1, whereL1 � f1(y0)/f0(y0).

Starting with

l(yN−1|y
N−2) = qT

N−1
nN−1(ϕ(yN−1; 0, σ2))−1

= qT

N−1
H

(N−1)1 (13)

and repeatedly applying (12), one arrives at

N−1Y
i=1

l(yk|y
k−1) = qT

1
H

(1)
PH

(2) . . .PH
(N−1)1 (14)

The result follows by using L1q
T

1
= πT H(0)P. �

3.3. Approximation to the LRT

We are interested in deriving an approximation to the LRT of the

random walk under the regime of low SNR and long observation

time, i.e. large N . We shall begin with two propositions.

Proposition 2 Suppose A = (ajk) ∈ R
d×d is a real tridiagonal

matrix. If akk = 0 for 1 ≤ k ≤ d, then whenever λ ∈ R is an
eigenvalue ofA, so is (−λ).

Refer to [8]. �

Proposition 3 The probability transition matrix P that satisfies as-
sumptions A1–A3 has the following properties:
B1. Let λ1, . . . , λd be the eigenvalues of P. Then, they can be
ordered as λ1 > λ2 > . . . > λd with λk ∈ R for 1 ≤ k ≤ d

B2. λk + λd+1−k = 0 for 1 ≤ k ≤ d

B3. λ1 = 1

First, let us show B1. Now, the matrix P = (pjk) for a random
walk is tridiagonal. Since pj,j+1pj+1,j > 0 for 1 ≤ j < d by
assumption A2, P has only real simple eigenvalues [9]. To show

B2, apply Prop. 2. Finally, B3 follows from the fact that the spectral

radius of a stochastic matrix is 1 [10, p. 3].
Consider H(i), which is a diagonal matrix with the (k, k)-th

entry equal to

ϕ(yi; ψk, σ2)

ϕ(yi; 0, σ2)
= exp

„
2yiψk − ψ2

k

2σ2

«
≈ e

− ψ2

k
2σ2

„
1 +

ψkyi

σ2

«
,

(15)

where the last statement is justified by using the low SNR assump-

tion and the approximation eδ ≈ 1 + δ for small |δ|. Use (15) in
Prop. 1; then, expand (11). The result is that LN ≈ LN,1 +LN,2a +
LN,2b+ higher order terms, where

• LN,1 is an expression that is linear in yi, 0 ≤ i ≤ N − 1. If
E1[Yi] = E0[Yi] ∀ 0 ≤ i ≤ N − 1, then to the first moment,
LN,1 does not play a role in the LRT.

• LN,2a is the effect of y0 on the LR. When N is large, we
expect that the effect is negligible compared to LN,2b.

• LN,2b consists of terms of the form yjyk for 1 ≤ j < k ≤
N − 1.

Let us examine LN,2b in further detail. Define the matri-

ces Q � P · diag(e−ψ2

1
/2σ2

, . . . , e−ψ2

d/2σ2

) and R � Q ·
diag(ψ1/σ, . . . , ψd/σ). It can be shown that Q satisfies B1 and
B2 [8]. Let κ1, . . . , κd be the eigenvalues of Q, with κ1 > . . . >
κd. Then, κ1 ≤ 1 [8]. Let UQ be the matrix that contains the
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eigenvectors of Q, and ΛQ � diag(κ1, . . . , κd). UQ is invertible

since the eigenvalues κi are all distinct. Define eΛQ � κ−1
1 ΛQ andeR � U−1

Q RUQ. Denote κ′
k � κk/κ1 for 1 ≤ k ≤ d, so thateΛQ = diag(κ′

1, . . . , κ
′
d), where 1 = κ′

1 > . . . > κ′
d = −1. LN,2b

can be expressed as

LN,2b =
1

κ2
1

X
1≤j<k≤N−1

ỹj ỹkaT
Υ[j, k]b (16)

where: Υ[j, k] � eΛj−1
Q

eReΛk−1−j
Q

eReΛN−1−k
Q (17)

and a, b are independent of the observations. For N large, most of
theΥ[j, k]’s will have j and (N − k) sufficiently large so that

eΛj−1
Q ≈ diag(1, 0, . . . , 0, (−1)j−1) and

eΛN−1−k
Q ≈ diag(1, 0, . . . , 0, (−1)N−1−k) (18)

Let Jjk be a d-by-dmatrix with all zeros except for a 1 in the (j, k)-
th position. Using (18),

Υ[j, k] ≈ J11
eReΛk−1−j

Q
eRJ11+

(−1)N−k+j
Jdd

eReΛk−1−j
Q

eRJdd+

(−1)j−1
Jdd

eReΛk−1−j
Q

eRJ11+

(−1)N−1−k
J11

eReΛk−1−j
Q

eRJdd (19)

The first two terms of (19) are functions of (k − j), while the last
two are not. In the event that the first two terms of (19) are dominant,

cjk � aT Υ[j, k]b will consist of a weighted sum of exponential
terms, and will be a function of (k − j). Indeed, we can see that the
exponential terms in cjk will have the form (κ′

i)
k−j . Consequently,

LN,2b ≈
dX

n=1

X
j<k

An(κ′
n)k−j ỹj ỹk (20)

for some constants An, 1 ≤ n ≤ d. The RHS of (20) for 1 <
n < d looks like the sum of (d − 2) FE statistics, cf. (5). In the
FE statistic, however, there are terms of the form ỹ2

j . Nonetheless,

under certain conditions, they can be shown to be negligible [8]. For

n ∈ {1, d} =⇒ |κn| = 1, and the corresponding terms in (20) can
be generated by second-order polynomials in ỹk. To summarize,

Proposition 4 For the LR of the class of random walks that we con-
sider to be approximated by a bank of FE statistics under the con-
ditions of low SNR and largeN , the following conditions are neces-
sary:
C1. The random walk Xi is zero mean in steady-state. That is,

limi→∞ E[Xi] = 0.
C2. The coefficient cjk = aT Υ[j, k]b is approximately a function
of (k − j).

C3. The squared terms ỹ2
j in the FE statistics used to generate

LN,2b in (20) are negligible compared to the cross-terms ỹj ỹk,
j 	= k.

It is interesting to note that LN,2b is a function of the eigenval-

ues of Q. Perhaps this is a general result that is true when P is an

arbitrary probability transition matrix.

If conditions C1–C3 are satisfied, and

cjk ≈ C′αk−j
(21)

for some C ′ and α, then necessary conditions exist for the LRT of
the random walk to be approximated by a single FE statistic.

Let us further investigate condition C2 and (21). Let eR = (ρjk).
An asterisk in either the row or column index shall denote all valid

values. For example, the notation ρ1∗ refers to the first row of eR,
ρ∗d refers to the last column of eR, etc. For θ, τ ∈ R

d, let θ 
 τ �
[θ1τ1, . . . , θdτd]T . Define S : R

d → R by S(θ) =
Pd

i=1 θi. Let

κ′ � [κ′
1, . . . , κ

′
d]T and use the notation that for θ ∈ R

d, θ<i> =
[θi

1, . . . , θ
i
d]T . Υ[j, k] can be re-written as:

Υ[j, k] = S((κ′)<k−1−j> 
 ρT
1∗ 
 ρ∗1)J11+

(−1)N−k+jS((κ′)<k−1−j> 
 ρT
d∗ 
 ρ∗d)Jdd+

(−1)j−1S((κ′)<k−1−j> 
 ρT
d∗ 
 ρ∗1)Jd1+

(−1)N−1−kS((κ′)<k−1−j> 
 ρT
1∗ 
 ρ∗d)J1d (22)

so that the dependence on κ′
i and ρjk is clear.

We shall say that cjk is approximately a function of (k − j) if
the terms of the vectors (ρT

d∗ 
 ρ∗1) and (ρT
1∗ 
 ρ∗d) are negligible

compared to (ρT
1∗
ρ∗1) and (ρT

d∗
ρ∗d). For example, the l∞ norm
could be used, so that cjk is approximately a function of (k − j) if

‖ρT
1∗ 
 ρ∗1‖∞, ‖ρT

d∗ 
 ρ∗d‖∞ 
 ‖ρT
d∗ 
 ρ∗1‖∞, ‖ρT

1∗ 
 ρ∗d‖∞
(23)

Suppose that, in addition, there exists some 1 < i < � d
2
� such

that

ρT
1∗ 
 ρ∗1 ≈ C1ei and ρT

d∗ 
 ρ∗d ≈ C2ed+1−i (24)

for some C1, C2 ∈ R, where the ei’s are the standard unit vectors in

R
d. Consequently,

cjk ≈ C′αk−j

where: C ′ = [C1a
T
J11b + (−1)N−1C2a

T
Jddb](κ′

i)
−1

(25)

α = κ′
i (26)

and the LRT can be approximated by a single FE detector. Specifi-

cally, if C1 is satisfied, then

LN ≈ LN,2b ≈ C′κ−2
1

X
j<k

αk−j ỹj ỹk

The statistic can be implemented by setting αLP = α = κ′
i in the FE

detector, cf. (5), if C3 holds.

4. SIMULATIONS

Evaluation of the detectors was done using receiver operating char-

acteristic (ROC) curves. Each ROC curve is a plot of the probability

of false alarm (PF ) vs. the probability of detection (PD), and was

generated using 20 simulations. The averages were plotted for each

curve, along with error bars of one standard deviation. The follow-

ing detectors were evaluated: the unfiltered energy (UE) detector;

the FE detector; the optimal random walk LRT (RW-LRT); and the

matched filter bound (MF). When the signal x � [x0, . . . , xN−1]
T

is known to the receiver, the optimal LRT is the matched filter. It is

unimplementable in reality, as the receiver does not have knowledge

of x. However, it provides an absolute upper bound when comparing
the ROC curves.

In the simulations, N = 6 × 104 and d = 117. Two random
walk models were studied. The first had the probability transition

matrix P1 given by

P1(j, k) =

j
0.5 1 < j < d, k = j ± 1
0 otherwise

(27)
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where P1(j, k) denotes the (j, k)-th element of P1. The reflecting

boundary conditions manifest asP1(1, 2) = P1(d, d− 1) = 1; and
the remaining elements of the first and last row of P1 are zero. The

second random walk model studied had the probability transition

matrix P2 given by

P2(j, k) =

8<
:

0.45 j ∈ (1, d+1
2

] ∪ ( 3d+1
2

, d), k = j − 1
0.55 j ∈ (1, d+1

2
] ∪ ( 3d+1

2
, d), k = j + 1

0.5 j ∈ ( d+1
2

, 3d+1
2

], k = j ± 1
(28)

with the first and last row being identical to P1, i.e., the same re-

flecting boundary conditions.

The simulated ROC curve for the random walk model associated

withP1 is given in Fig. 1 for SNR =−44.0 dB. Asmaxk |ψk/σ| ≈
1.76 × 10−2, the detection problem is in the regime of low SNR.

The performance of the FE detector is approximately the same as
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Fig. 1. Simulated ROC curve for the random walk model with prob-
ability transition matrix P1 at SNR = −44.0 dB.

the optimal RW-LRT. The MF bound has the best performance, as

was expected. The UE detector has the worst performance, and is

no better than flipping a fair coin. Conditions C1, (23), (24), and

C3 hold for the first random walk model. Consequently, the nec-

essary conditions for the RW-LRT to be approximated by a single

FE detector are satisfied. The simulated ROC curve for the random

walk model associated with P2 is given in Fig. 2 for SNR = −2.50
dB. As before, the MF bound has the best performance, and the UE

detector the worst. For the second random walk model, however,

the FE detector performs noticeably poorer than the RW-LRT. How-

ever, condition C1 is not satisfied, and so we would not expect a

single FE statistic to well approximate the RW-LRT. For the second

model, maxk |ψk/σ| ≈ 9.88 × 10−3. The detection problem is in

the regime of low SNR, even though the SNR is higher than in the

previous example.

5. CONCLUSIONS

In this paper, we presented a closed form expression for the LR

of a Markov signal in AWGN. The LRT is the optimal test, in the

Neyman-Pearson sense, for the binary hypothesis problem. Neces-

sary conditions were obtained for the LRT of a class of random walk

processes to be approximated by a bank of filtered energy detectors
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Fig. 2. Simulated ROC curve for the random walk model with prob-
ability transition matrix P2 at SNR = −2.50 dB.

under the regime of low SNR and long observation time. An ad-

ditional condition is required for the LRT to be approximated by a

single filtered energy detector. A simulation study produced results

that were consistent with the analysis.
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