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ABSTRACT

The reliable computation of detection threshold 7" given a
desired probability of false alarm Py, is an important issue
in the design of the FFT filter bank-based summation CFAR
(constant false alarm rate) detector. The computation of de-
tection threshold 7" is based on numerical procedures such
as the Newton-Ralphson algorithm and a priori knowledge of
lower and upper bounds for 7" for a given Py,. Current ap-
proaches used in the initialization stage of the computation
of threshold T are largely ad hoc as there are no theoretical
upper and lower bounds for 7" reported in the literature. In
this article, several theoretical upper and lower bounds for 7'
for overlapped and non-overlapped signal data are derived.
These results enable a proper design of the FFT filter bank-
based summation CFAR detector.

1. INTRODUCTION

The FFT filter bank-based summation CFAR detector is an
efficient technique for detecting narrowband signals in noise
and has important applications in civilian spectrum monitor-
ing, electronic warfare radio surveillance systems, radio as-
tronomy and instrumentation. This detector operates by form-
ing spectral power estimates in channels, each of which cor-
responds to a group of one or more contiguous FFT bins, and
comparing these power estimates against a detection thresh-
old, T'. A signal is declared to exist in that channel only if
the power in a channel exceeds 7. The performance analy-
sis of the FFT filter bank-based summation CFAR detector
has been the subject of much study [1]-[7]. In particular,
closed-form algebraic formulas giving the probability of false
alarm, Py, as a function of T' have been derived [1], [2],
[6]. These results enable T to be computed for a given Py,
through numerical procedures. However, practical implemen-
tations have been largely ad hoc since a good lower or upper
bound for 7" is required for the initialization of the numerical
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is not available. Note that using good bounds for 7' in the
initialization of the numerical procedures is highly desirable
since it reduces the likelihood of problems with numerical er-
rors. Also, the bounds can be used as a test to ensure that the
final value of 7" is reasonable. This paper presents theoretical
lower and upper bounds for 7' for a given Py,. In addition
to being useful for the computation and validation of 7', these
results can be extended to derive good approximations to 7.

This article is organized as follows. Section 2 introduces
the FFT filter bank-based summation CFAR detector. Sec-
tion 3 presents the formulas which relate T" and Py, for over-
lapped and non-overlapped signal data. Section 4 formulates
lower and upper bounds for these two cases, while Section 5
concludes this paper.

2. THE FFT FILTER BANK-BASED L-BLOCK
SUMMATION CFAR DETECTOR

Assume a band-limited signal that is uniformly sampled at
a rate of F; samples per second. Let there be M channels
uniformly distributed across the frequency range contained
within the Nyquist bandwidth. Assume that K FFT bins are
assigned to each channel and that NV FFT bins (N < K) cen-
tered within each channel are used to estimate the power con-
tained within the channel. Consequently, an FFT of length
M K is needed to compute the power levels for the M chan-
nels. Without any loss of generality, assume K — N is an even
integer. Let w = [wo, -+ ,wak—1]¢ be a linear phase FIR
filter of length M K, where the superscript ¢ denotes matrix
(vector) transposition. Let L > 1 be any positive integer and
consider L consecutive overlapping sample vectors S; con-
structed as follows :

Si = [r—y)ME+ME-1, " Ti1—7) MK (1)

0 <11 < L — 1. Here, r, is the n-th sample of the input data
stream, 0 < v < % is the overlap ratio and vM K is required
to be an integer. In practice, v is often selected to be either 0

procedures and a usable theoretical solution for the bounds or % and in the case of v = 0, no data overlapping actually
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takes place. For each [, the two input vectors S; and S; 1 have
~vM K samples in common. The vectors S; are windowed by
the windowing sequence w, resulting in the windowed sample
vectors X;:

t
X; = [Wori(1—y)ME+MK—15 """ » WMK-17Ti(1—~)MK])

The vectors X; are then transformed by the inverse discrete
Fourier transform matrix F of dimensions M K x MK to
yield the FFT filter bank output sample vectors Y ;:

t
Y, =FX; = [yi0, Y115 "+ » Y, ME-1]

where

1 1 1

2mjl 2mj(MK—1)1
F = 1 eMK ce e MK 2)
2mj(MK—1) 2 (MK—1)(MK—1)

1 e MK MK

From each vector Y, a vector z; = [210, " ,2,m—1]" of

length M is formed by summing the power from the N FFT
bins centered within each channel:
|2

b

N-1
ALk = Z ‘yl7kK+—K;N+m

m=0
0<I<L-1,0<k<M-1. (3

In other words, the power from the N FFT bins with indices
I,I+1, -, I+ (N —1) is summed to form the power of the
k-th channel for the data block S;, where I = kK + K EN .
The detection criterion for the FFT filter bank-based L-block
summation CFAR detector is defined as follows: For a given
Py, and corresponding threshold 7', if Ef;ol ar > T, a
signal is declared to exist in the k-th channel, otherwise, it
is declared that there is no signal in the k-th channel. For
brevity, the FFT filter bank-based L-block summation CFAR
detector shall simply be called the L-block summation CFAR
detector in this article.

3. THE PROBABILITY OF FALSE ALARM Py, FOR
THE L-BLOCK SUMMATION CFAR DETECTOR

Assume the input data stream r,, is a zero-mean complex-

valued white Gaussian noise sequence with E(r,1%) = 020, 4.

where o > 0 is the noise variance (noise floor) and §,, , = 1
if p = qand d, , = 0if p # ¢. For a given threshold, T', the
corresponding probability of false alarm, P, of the L-block
summation CFAR detector is defined by

L—-1
Pfo = Pr{z 2k > T} 4)
=0

The following theorems provide the theoretical basis for com-
puting the threshold, 7', for the L-block summation CFAR
detector:

Theorem 1. (c.f. [1], [2], [6]) Assume L > 2and 0 < v < %
For a given threshold 7' > 0, the corresponding probability of
false alarm Py, for the L-block summation CFAR detector is
given by:

LN ALN-1 -
Py = m e ooxm 5)
! Z ()‘m - )‘l)

=T | |

1<I<LN,l#m

where \,,, 1 < m < LN, are the LN distinct positive eigen-
values of the L x L block matrix H:

A B o0 --- 0 o0
BY A B 0 0
H ..
H-| 0 BOA B0 ©)
0 ... 0 BY A B
0 -0 ... BHE A

In (6), H is of dimensions LN x LN, 0 is the N x N zero
matrix and A and B are N x N matrices defined respectively
by:

T11 T12 Tlq TIN
A= | 11 7p Tpq TpN 7
TN1 TN2 TNgq TNN
MK-1 .
2mjl(p — q)
Tog = ; wf exp = ®)
and
Y1 M2 Mg ot YIN
B — ’Ypl fyp2 oo fypq « e f-ypN (9)
IYN1 YN2 - YNgq INN
Yoq = e 21— I+g-1) o
MK-1 .
! Z 2mjl(p — q)
WIWi(1—y)M K €XP T MK
1=0
(10)
Let
ALN-1
Bm = m , 1<m<LN. (11)
H ()‘m - )‘l)
1<I<LN,l#m
It can be shown that
LN
> Bm=1 (12)
m=1
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The sequence [3,,, alternates in sign and can sometimes fluc-
tuate quite erratically when the spacings between some of the
eigenvalues \,,,, 1 < m < LN, are very small. This signifi-
cantly contributes to the numerical difficulties associated with
the computation of 7T'.

Theorem 2. (c.f. [2], [6]) Assume L > 1, N > 1 and v = 0.
For a given threshold 7' > 0, the probability of false alarm
Py, for the L-block summation CFAR detector is given by

N L k—1 (UZCC )t .
Ppo = z_j“;Amk;%e*m (13)

where the coefficients A,,x, 1 < m < N,1 < k < L, are
defined by

L
N—-1
AmL = Hom )
H (Nm - Ml)
1<I<N,l#m (14)
Amk = AmL X Z
ki+-+km-1+kmy1+-+kn=L—k
Fm(kl7 k27 e 7km—17 km-l—lu e 7kN)
where
Fm(k17 k27 t ’km—lv k?’n-‘rla e 7kN)
I (L +ky — 1)! ( m )’“’
o (L —1)! _
<IN L k(L= 1) \ i — pom

Note that k;, 1 < [ < N, are non-negative integers and i,
1 <1 < N, are the N distinct positive eigenvalues of the
Hermitian matrix A defined by (7). It can be verified that

N
S Apr=1 (15)

L
m=1k=1
The sequences A, and 3,,, (defined in (11)) behave in a sim-
ilar way.

Theorem 3. (c.f. [2],[6]) Let L > 1, N =1 and v = 0. For
a given threshold T > 0, the probability of false alarm Py,
for the L-block summation CFAR detector is given by

Cy
Pra=) e (16)
t=0 ’
where
MK-1
A\ =o? Z w} 17)
1=0

4. LOWER AND UPPER BOUNDS

In this section, we present several lower and upper bounds
for T' for overlapped and non-overlapped signal data. The
technical derivations of these results, omitted due to space
constraints, will appear in a forthcoming publication.

4.1. Overlapped Input Data

Theorem 4. Let L > 2and 0 < y < 3. Let
Amaz = maxi<i<rn{A} (18)

be the maximum eigenvalue of the positive definite Hermitian
matrix H defined by (6). Then

“Amazo® I Ppq < T (19)

The lower bound given in Theorem 4 is easily computed.
However, better lower bounds can be obtained, as demon-
strated by the following theorem:

Theorem 5. Let L > 2,0 < v < 1 and assume \; > Xy >
<o+ > Ay where A\, 1 < m < LN, are the LN positive
eigenvalues of the LN x LN Hermitian matrix H defined by
(6). For any integer k, 2 < k < LN, let the solution for T of
the following equation be denoted by T'( P4, k):

k

PR 5
P, = m ¢ (20)
m=1 H ()\m - )‘l)
1<I<k,l#m
Then
_)\maza2 hlea < T(Pfaaz) <. < T(Pfaak) <
T(Pfa,k+1)<--- <T(Pjq,LN) =T 21

For small values of k, the lower bounds T'(P¢,, k) are rela-
tively easy to compute numerically as the eigenvalues used in
(20), namely, Ay > A9 > --- > )\, are reasonably large and
widely spaced.

Theorem 6 . Let L > 2,0 < < £ and define

Amaz

LN - MK-1
LN~ W2 — Mnaz
PO = <Z |6m|> Zlio ! (22)

m=1

where (3,,, and A\, 4. are defined by (11) and (18) respectively.
If 0 < Pyq < Po, then

MK-1
T <-LNo®(nPf,) > wj 23
> fa w; ( )
=0

The upper bound given in (23) is a universal upper bound in
the sense that it depends only on L, N and P, for a normal-
ized window (that is, for windows satisfying the constraint
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l]\iff_l w? = 1). Preliminary tests indicate that for rela-

tively small Py, the inequality (23) holds for many windows.
The following theorem may provide a better upper bound.

Theorem 7. Let L > 2and 0 < v < % For any positive

integer m > 1, let the unique solution for z of the following
equation be denoted by T, (Pyq):

22 Zm—1
L S+t ——) =Pra 24
2 < tet ot +(m—1)!> r (24)
Then
T < )\maIU2TLN(Pfa) (25)
< A0 [N = 1= 3\/(LN 1) In Py,

where A, 4, is defined by (18).

4.2. Non-Overlapped Input Data

Theorem 8 . Let L > 1, N > 2 and v = 0. Let

Hmax = maxlglgN{Ml} (26)

be the maximum eigenvalue of the Hermitian matrix A de-
fined by (7). Then

_,Umamd2 In Pfa, S Mnm,mOQTL (Pfa) S T (27)
Theorem 9 . Let L > 1, N > 2 and v = 0. Let 4, be
defined by (26). Then

T S /anamo'QTLN (Pfa) (28)

< ftmaro® [LN —1-3/(LN =1) In Py,

Theorem 10 . Let L > 1, N > 2 and v = 0. Let uy,
1 <1 < N, be the N distinct positive eigenvalues of the
Hermitian matrix A defined by (7). Let T; and 75 be the
solutions for T of the equations (29) and (30) respectively:

N T 1
D Ame i = (Pp)T (29)
m=1
N T 1
Y Ape Pim =1-(1-P)T (30)
m=1
where A,, = 7 . We have

HlSISN,l;sm(Nmfm)

LT, <T< LT, 31

5. CONCLUSIONS

Lower and upper bounds for the threshold 7' of the FFT filter
bank-based summation CFAR detector have been derived for
overlapped and non-overlapped signal data. These bounds are
useful for initializing the computation of 7" for a given prob-
ability of false alarm Pf,. The formula (5) is sensitive to
rounding errors while the formula (13) is more robust, though
both may fail for large /N or L. We plan to extend these re-
sults to derive tighter bounds for 7', in the process, obtaining
a good approximation for 7'.
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