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ABSTRACT

The reliable computation of detection threshold T given a
desired probability of false alarm Pfa is an important issue
in the design of the FFT filter bank-based summation CFAR
(constant false alarm rate) detector. The computation of de-
tection threshold T is based on numerical procedures such
as the Newton-Ralphson algorithm and a priori knowledge of
lower and upper bounds for T for a given P fa. Current ap-
proaches used in the initialization stage of the computation
of threshold T are largely ad hoc as there are no theoretical
upper and lower bounds for T reported in the literature. In
this article, several theoretical upper and lower bounds for T
for overlapped and non-overlapped signal data are derived.
These results enable a proper design of the FFT filter bank-
based summation CFAR detector.

1. INTRODUCTION

The FFT filter bank-based summation CFAR detector is an
efficient technique for detecting narrowband signals in noise
and has important applications in civilian spectrum monitor-
ing, electronic warfare radio surveillance systems, radio as-
tronomy and instrumentation. This detector operates by form-
ing spectral power estimates in channels, each of which cor-
responds to a group of one or more contiguous FFT bins, and
comparing these power estimates against a detection thresh-
old, T . A signal is declared to exist in that channel only if
the power in a channel exceeds T . The performance analy-
sis of the FFT filter bank-based summation CFAR detector
has been the subject of much study [1]-[7]. In particular,
closed-form algebraic formulas giving the probability of false
alarm, Pfa, as a function of T have been derived [1], [2],
[6]. These results enable T to be computed for a given P fa

through numerical procedures. However, practical implemen-
tations have been largely ad hoc since a good lower or upper
bound for T is required for the initialization of the numerical
procedures and a usable theoretical solution for the bounds

is not available. Note that using good bounds for T in the
initialization of the numerical procedures is highly desirable
since it reduces the likelihood of problems with numerical er-
rors. Also, the bounds can be used as a test to ensure that the
final value of T is reasonable. This paper presents theoretical
lower and upper bounds for T for a given P fa. In addition
to being useful for the computation and validation of T , these
results can be extended to derive good approximations to T .

This article is organized as follows. Section 2 introduces
the FFT filter bank-based summation CFAR detector. Sec-
tion 3 presents the formulas which relate T and Pfa for over-
lapped and non-overlapped signal data. Section 4 formulates
lower and upper bounds for these two cases, while Section 5
concludes this paper.

2. THE FFT FILTER BANK-BASED L-BLOCK
SUMMATION CFAR DETECTOR

Assume a band-limited signal that is uniformly sampled at
a rate of Fs samples per second. Let there be M channels
uniformly distributed across the frequency range contained
within the Nyquist bandwidth. Assume that K FFT bins are
assigned to each channel and that N FFT bins (N ≤ K) cen-
tered within each channel are used to estimate the power con-
tained within the channel. Consequently, an FFT of length
MK is needed to compute the power levels for the M chan-
nels. Without any loss of generality, assume K−N is an even
integer. Let w = [w0, · · · , wMK−1]t be a linear phase FIR
filter of length MK , where the superscript t denotes matrix
(vector) transposition. Let L ≥ 1 be any positive integer and
consider L consecutive overlapping sample vectors S l con-
structed as follows :

Sl = [rl(1−γ)MK+MK−1, · · · , rl(1−γ)MK ]t (1)

0 ≤ l ≤ L − 1. Here, rn is the n-th sample of the input data
stream, 0 ≤ γ ≤ 1

2 is the overlap ratio and γMK is required
to be an integer. In practice, γ is often selected to be either 0
or 1

2 and in the case of γ = 0, no data overlapping actually
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takes place. For each l, the two input vectors S l and Sl+1 have
γMK samples in common. The vectors Sl are windowed by
the windowing sequencew, resulting in the windowed sample
vectors Xl:

Xl = [w0rl(1−γ)MK+MK−1, · · · , wMK−1rl(1−γ)MK ]t

The vectors Xl are then transformed by the inverse discrete
Fourier transform matrix F of dimensions MK × MK to
yield the FFT filter bank output sample vectors Y l:

Yl = FXl = [yl,0, yl,1, · · · , yl,MK−1]t

where

F =

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
· · · · · · · · · · · ·
1 e

2πjl
MK · · · e

2πj(MK−1)l
MK

· · · · · · · · · · · ·
1 e

2πj(MK−1)
MK · · · e

2πj(MK−1)(MK−1)
MK

⎤
⎥⎥⎥⎥⎦ (2)

From each vector Yl, a vector zl = [zl,0, · · · , zl,M−1]t of
length M is formed by summing the power from the N FFT
bins centered within each channel:

zl,k =
N−1∑
m=0

|yl,kK+ K−N
2 +m|2 ,

0 ≤ l ≤ L − 1 , 0 ≤ k ≤ M − 1 . (3)

In other words, the power from the N FFT bins with indices
I , I +1, · · · , I +(N −1) is summed to form the power of the
k-th channel for the data block S l, where I = kK + K−N

2 .
The detection criterion for the FFT filter bank-based L-block
summation CFAR detector is defined as follows: For a given
Pfa and corresponding threshold T , if

∑L−1
l=0 zl,k > T , a

signal is declared to exist in the k-th channel, otherwise, it
is declared that there is no signal in the k-th channel. For
brevity, the FFT filter bank-based L-block summation CFAR
detector shall simply be called the L-block summation CFAR
detector in this article.

3. THE PROBABILITY OF FALSE ALARM Pfa FOR
THE L-BLOCK SUMMATION CFAR DETECTOR

Assume the input data stream rn is a zero-mean complex-
valued white Gaussian noise sequence with E(rpr∗q ) = σ2δp,q ,
where σ2 > 0 is the noise variance (noise floor) and δp,q = 1
if p = q and δp,q = 0 if p �= q. For a given threshold, T , the
corresponding probability of false alarm, Pfa, of the L-block
summation CFAR detector is defined by

Pfa = Pr

{
L−1∑
l=0

zl,k ≥ T

}
(4)

The following theorems provide the theoretical basis for com-
puting the threshold, T , for the L-block summation CFAR
detector:

Theorem 1. (c.f. [1], [2], [6]) Assume L ≥ 2 and 0 < γ ≤ 1
2 .

For a given threshold T > 0, the corresponding probability of
false alarm Pfa for the L-block summation CFAR detector is
given by:

Pfa =
LN∑

m=1

λLN−1
m∏

1≤l≤LN,l�=m

(λm − λl)
e
− T

σ2λm (5)

where λm, 1 ≤ m ≤ LN , are the LN distinct positive eigen-
values of the L × L block matrix H:

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

A B 0 · · · 0 0
BH A B 0 · · · 0
0 BH A B · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 BH A B
0 · · · 0 · · · BH A

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

In (6), H is of dimensions LN × LN , 0 is the N × N zero
matrix and A and B are N ×N matrices defined respectively
by:

A =

⎡
⎢⎢⎢⎢⎣

τ11 τ12 · · · τ1q · · · τ1N

· · · · · · · · · · · · · · · · · ·
τp1 τp2 · · · τpq · · · τpN

· · · · · · · · · · · · · · · · · ·
τN1 τN2 · · · τNq · · · τNN

⎤
⎥⎥⎥⎥⎦ (7)

τpq =
MK−1∑

l=0

w2
l exp

2πjl(p− q)
MK

(8)

and

B =

⎡
⎢⎢⎢⎢⎣

γ11 γ12 · · · γ1q · · · γ1N

· · · · · · · · · · · · · · · · · ·
γp1 γp2 · · · γpq · · · γpN

· · · · · · · · · · · · · · · · · ·
γN1 γN2 · · · γNq · · · γNN

⎤
⎥⎥⎥⎥⎦ (9)

γpq = e−2πj(1−γ)(I+q−1) ×
γMK−1∑

l=0

wlwl+(1−γ)MK exp
2πjl(p− q)

MK

(10)

Let

βm =
λLN−1

m∏
1≤l≤LN,l�=m

(λm − λl)
, 1 ≤ m ≤ LN . (11)

It can be shown that

LN∑
m=1

βm = 1 (12)
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The sequence βm alternates in sign and can sometimes fluc-
tuate quite erratically when the spacings between some of the
eigenvalues λm, 1 ≤ m ≤ LN , are very small. This signifi-
cantly contributes to the numerical difficulties associated with
the computation of T .

Theorem 2. (c.f. [2], [6]) Assume L ≥ 1, N > 1 and γ = 0.
For a given threshold T > 0, the probability of false alarm
Pfa for the L-block summation CFAR detector is given by

Pfa =
N∑

m=1

L∑
k=1

Amk

k−1∑
t=0

(
T

σ2µm

)t

t!
e
− T

σ2µm (13)

where the coefficients Amk, 1 ≤ m ≤ N , 1 ≤ k ≤ L, are
defined by

AmL =

⎛
⎜⎜⎝ µN−1

m∏
1≤l≤N,l �=m

(µm − µl)

⎞
⎟⎟⎠

L

,

Amk = AmL ×
∑

k1+···+km−1+km+1+···+kN =L−k

Γm(k1, k2, · · · , km−1, km+1, · · · , kN )

(14)

where

Γm(k1, k2, · · · , km−1, km+1, · · · , kN )

=
∏

1≤l≤N,l �=m

(L + kl − 1)!
kl! (L − 1)!

(
µl

µl − µm

)kl

Note that kl, 1 ≤ l ≤ N , are non-negative integers and µ l,
1 ≤ l ≤ N , are the N distinct positive eigenvalues of the
Hermitian matrix A defined by (7). It can be verified that

N∑
m=1

L∑
k=1

Amk = 1 (15)

The sequences Amk and βm (defined in (11)) behave in a sim-
ilar way.

Theorem 3. (c.f. [2], [6]) Let L ≥ 1, N = 1 and γ = 0. For
a given threshold T > 0, the probability of false alarm Pfa

for the L-block summation CFAR detector is given by

Pfa =
L−1∑
t=0

(
T
λ

)t

t!
e−

T
λ (16)

where

λ = σ2
MK−1∑

l=0

w2
l (17)

4. LOWER AND UPPER BOUNDS

In this section, we present several lower and upper bounds
for T for overlapped and non-overlapped signal data. The
technical derivations of these results, omitted due to space
constraints, will appear in a forthcoming publication.

4.1. Overlapped Input Data

Theorem 4 . Let L ≥ 2 and 0 < γ ≤ 1
2 . Let

λmax = max1≤l≤LN{λl} (18)

be the maximum eigenvalue of the positive definite Hermitian
matrix H defined by (6). Then

−λmaxσ2 lnPfa ≤ T (19)

The lower bound given in Theorem 4 is easily computed.
However, better lower bounds can be obtained, as demon-
strated by the following theorem:

Theorem 5 . Let L ≥ 2, 0 < γ ≤ 1
2 and assume λ1 > λ2 >

· · · > λLN where λm, 1 ≤ m ≤ LN , are the LN positive
eigenvalues of the LN ×LN Hermitian matrix H defined by
(6). For any integer k, 2 ≤ k ≤ LN , let the solution for T of
the following equation be denoted by T (Pfa, k):

Pfa =
k∑

m=1

λk−1
m∏

1≤l≤k,l �=m

(λm − λl)
e
− T

σ2λm (20)

Then

−λmaxσ2 lnPfa ≤ T (Pfa, 2) ≤ · · · ≤ T (Pfa, k) ≤
T (Pfa, k + 1) ≤ · · · ≤ T (Pfa, LN) = T (21)

For small values of k, the lower bounds T (Pfa, k) are rela-
tively easy to compute numerically as the eigenvalues used in
(20), namely, λ1 > λ2 > · · · > λk, are reasonably large and
widely spaced.

Theorem 6 . Let L ≥ 2, 0 < γ ≤ 1
2 and define

P0 =

(
LN∑

m=1

|βm|
)− λmax

LN
∑MK−1

l=0 w2
l − λmax

(22)

where βm and λmax are defined by (11) and (18) respectively.
If 0 < Pfa < P0, then

T ≤ −LNσ2 (lnPfa)
MK−1∑

l=0

w2
l (23)

The upper bound given in (23) is a universal upper bound in
the sense that it depends only on L, N and Pfa for a normal-
ized window (that is, for windows satisfying the constraint
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∑MK−1
l=0 w2

l = 1). Preliminary tests indicate that for rela-
tively small Pfa, the inequality (23) holds for many windows.

The following theorem may provide a better upper bound.

Theorem 7. Let L ≥ 2 and 0 < γ ≤ 1
2 . For any positive

integer m ≥ 1, let the unique solution for z of the following
equation be denoted by Tm(Pfa):

e−z

(
1 + z +

z2

2!
+ · · · + zm−1

(m − 1)!

)
= Pfa (24)

Then

T ≤ λmaxσ2TLN(Pfa) (25)

≤ λmaxσ2
[
LN − 1 − 3

√
(LN − 1) lnPfa

]
where λmax is defined by (18).

4.2. Non-Overlapped Input Data

Theorem 8 . Let L ≥ 1, N ≥ 2 and γ = 0. Let

µmax = max1≤l≤N{µl} (26)

be the maximum eigenvalue of the Hermitian matrix A de-
fined by (7). Then

−µmaxσ2 ln Pfa ≤ µmaxσ2TL(Pfa) ≤ T (27)

Theorem 9 . Let L ≥ 1, N ≥ 2 and γ = 0. Let µmax be
defined by (26). Then

T ≤ µmaxσ2TLN(Pfa) (28)

≤ µmaxσ2
[
LN − 1 − 3

√
(LN − 1) lnPfa

]

Theorem 10 . Let L ≥ 1, N ≥ 2 and γ = 0. Let µl,
1 ≤ l ≤ N , be the N distinct positive eigenvalues of the
Hermitian matrix A defined by (7). Let T1 and T2 be the
solutions for T of the equations (29) and (30) respectively:

N∑
m=1

Ame
− T

σ2µm = (Pfa)
1
L (29)

N∑
m=1

Am e
− T

σ2µm = 1 − (1 − Pfa)
1
L (30)

where Am = µN−1
mQ

1≤l≤N,l �=m(µm−µl)
. We have

LT1 ≤ T ≤ LT2 (31)

5. CONCLUSIONS

Lower and upper bounds for the threshold T of the FFT filter
bank-based summation CFAR detector have been derived for
overlapped and non-overlapped signal data. These bounds are
useful for initializing the computation of T for a given prob-
ability of false alarm Pfa. The formula (5) is sensitive to
rounding errors while the formula (13) is more robust, though
both may fail for large N or L. We plan to extend these re-
sults to derive tighter bounds for T , in the process, obtaining
a good approximation for T .
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