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Abstract— This paper considers the stochastic resonance (SR)
effect in the two hypotheses signal detection problem. Per-
formance of a SR enhanced detector is derived in terms of
the probability of detection PD and the probability of false
alarm PFA. Furthermore, the conditions required for potential
performance improvement using SR are developed. Expression
for the optimal stochastic resonance noise pdf which renders the
maximum PD without increasing PFA is derived. By further
strengthening the conditions, this approach yields the constant
false alarm rate (CFAR) receiver. Finally, detector performance
comparisons are made between the optimal SR noise, Gaussian,
Uniform and optimal symmetric pdf noises.

I. INTRODUCTION

Stochastic resonance (SR) is a nonlinear physical phe-

nomenon in which the output signals of some nonlinear

systems can be amplified by adding noise. Since its discovery

by Benzi et al. in 1981 [1], the SR effect has been observed

and applied in numerous nonlinear systems [2]. The classic

SR signature is the signal-to-noise ratio (SNR) gain of certain

systems, i.e, in some nonlinear systems, the output SNR is

significantly higher than the input SNR when an appropriate

amount of noise is added [2], [3]. In signal detection the-

ory, SR also plays a very important role to improve signal

detectability. In [4] and [5], improvement of detection per-

formance of a weak sinusoid signal is reported. To detect

a DC signal in a Gaussian mixture noise background, Kay

[6] showed that under certain conditions, performance of the

sign detector can be enhanced by adding some white Gaussian

noise. A study of the phenomenon of stochastic resonance in

quantizers showed that a better detection performance can be

achieved by a proper choice of the quantizer thresholds [7].

Recently, it was pointed out that the detection performance

can be further improved by using an optimal detector on the

output signal [8]. Despite the progress achieved by the above

approaches, SR effects are only reported in a very limited

number of signal detection systems. In this paper, we try to

explore the underlying mechanism of this SR phenomenon for

a more general two hypotheses detection problem.

Consider a two hypotheses detection problem where given

a N dimensional data vector x ∈ RN , we have to decide

between two hypotheses H1 or H0,

{
H0: px(x;H0) = p0(x)
H1: px(x;H1) = p1(x) , (1)

where p0(x) and p1(x) are the pdfs of x under H0 and H1,

respectively. In order to make a decision, a test (possibly

randomized) is needed to choose between the two hypotheses.

This test can be completely characterized by a critical function
(decision function) φ where 0 ≤ φ(x) ≤ 1 for all x.

For any observation x, this test chooses the H1 hypothesis

with probability φ(x). In many cases, φ(x) can be implicitly

expressed by using a test statistic T which is a function of x
and a threshold η such that

T (x) >
<

H1

H0

η. (2)

Therefore, probability of detection PD is given by

P x
D =

∫
φ(x)p1(x)dx, (3)

and the probability of false alarm PFA is given by

P x
FA =

∫
φ(x)p0(x)dx, (4)

where the superscripts on PD and PFA in (3) and (4) denote

that the test in (2) is employed for the data vector x. Although a

Neyman-Pearson detector is optimum in the sense of maximiz-

ing PD given a fixed PFA, it requires the complete knowledge

of the pdfs p0(·) and p1(·) which are not always available in

a practical application and sometime too complicated to be

implemented. Therefore, some suboptimal detectors that are

simpler and more robust are used in numerous applications.

For some suboptimal detectors, as Kay pointed out in [6],

detection performance can be improved by adding an inde-

pendent noise to the data under certain conditions. However,

the underlying mechanism of this SR phenomenon has not

been fully explored. Furthermore, it raises the more interesting

question as to how we determine the best ‘noise’ to be added

in order to achieve the best achievable detection performance

for the suboptimal detector. In this case, the detection problem

can be stated as: Given that the test is fixed; i.e., the critical

function φ(·) (e.g., T and η) is fixed, what kind of noise and

how much noise (i.e., noise pdf) should we add to the observed

data to maximize PD without increasing PFA? In this paper, a

theoretical analysis is presented to gain further insight into the

SR phenomenon, and the detection performance of the noise

enhanced observations is obtained. Furthermore, the optimum
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noise pdf, i.e., not only the noise level but also the noise types

is determined.

II. NOISE ENHANCED DETECTION

In order to enhance detection performance, we add noise to

the original data process x and obtain a new data process y
given by

y = x + n, (5)

where n ∈ RN is either an independent random process with

pdf pn(·) or a nonrandom signal. Notice that here we do

not have any constraint for n. For example, n can even be

a deterministic signal A ∈ RN , corresponding to pn(n) =
δ(n−A). The pdf of y is expressed by the convolution of the

pdfs such that

py(y) = px(x) ∗ pn(x) =
∫

px(x)pn(y − x)dx. (6)

The binary hypotheses testing problem for this new observed

data y can be expressed as:{
H0: py(y;H0) =

∫
p0(x)pn(y − x)dx

H1: py(y;H1) =
∫

p1(x)pn(y − x)dx . (7)

Since the detector is fixed, i.e., the critical function φ of y is

precisely the one used for x, the PD based on data y is given

by,

P y
D =

∫
φ(y)py(y;H1)dy

=
∫

p1(x)Cn,φ(x)dx, (8)

where

Cn,φ(x) ≡
∫

φ(y)pn(y − x)dy. (9)

Alternatively,

P y
D =

∫
pn(x)

(∫
φ(y)p1(y − x)dy

)
dx

=
∫

F1,φ(x)pn(x)dx, (10)

where

Fi,φ(x) ≡
∫

φ(y)pi(y − x)dy, (11)

i = 0, 1 corresponding to hypothesis Hi and P x
D = F1,φ(0).

Similarly, we have,

P y
FA =

∫
p0(x)Cn,φ(x)dx (12)

=
∫

F0,φ(x)pn(x)dx, (13)

and P x
FA = F0,φ(0). To simplify notation, we omit the

subscript φ of F and C and denote them as F1, F0 and

Cn, respectively. Further, from (11), F1(x0) and F0(x0) are

actually the conditional PD and PFA for this detection scheme

with input y = x + x0, respectively. From (10) and (13),

we may formalize the definition of the optimal SR noise as

follows.

Consider the two hypotheses detection problem as in (1).

The pdf of optimum SR noise is given by

popt
n = arg max

pn

∫
F1(x)pn(x)dx (14)

where

1) pn(x) ≥ 0, x ∈ RN .

2)
∫

pn(x)dx = 1.

3)
∫

F0(x)pn(x)dx ≤ F0(0).
Conditions 1) and 2) are fundamental properties of a pdf

function. Condition 3) ensures that P y
FA ≤ P x

FA, i.e., the

PFA constraint specified under the Neyman-Pearson Criterion

is satisfied. Further, if the inequality of condition 3) becomes

equality1, this detector is CFAR.

III. OPTIMUM SR NOISE

Let us consider the relationship between pn(x) and F (x).
By (11), for a given value f0 of F0, we have x = F−1

0 (f0),
where F−1

0 is the inverse function of F0. When F0 is a one-

to-one mapping function, x only takes one value. Otherwise,

F−1
0 (f0) is a set of x where F0(x) = f0. Therefore, we have

a function/mapping relationship between F1 and F0 given by

f1 = F1(F−1
0 (f0)). (15)

Furthermore, the conditions on the optimum noise can be

rewritten in terms of f0 equivalently as

4) pn,f0(f0) ≥ 0.
5)

∫
pn,f0(f0)df0 = 1.

6)
∫

f0pn,f0(f0)df0 ≤ P x
FA.

and

P y
D =

∫
f1pn,f0(f0)df0 (16)

Before determining the exact form of popt
n , we first state the

following theorem for the form of optimum SR noise.
Theorem 1 (Form of Optimum SR Noise): To maximize

P y
D, under the constraint that P y

FA ≤ P x
FA, the optimum noise

can be assumed to take the following form 2

popt
n (n) = λδ(n − n1) + (1 − λ)δ(n − n2) (17)

where 0 ≤ λ ≤ 1. In other words, to obtain the maximum

achievable detection performance, the optimum noise is a ran-

domization of two discrete DC vectors added with probability

λ and 1 − λ, respectively.
From Theorem 1, with f0i = F0(ni) and ni such that F1(ni) =
f1i = F1,max(f0i), i = 1, 2, we have

P y
D,opt = λF1,max(f01) + (1 − λ)F1,max(f02), (18)

and

P y
FA,opt = λf01 + (1 − λ)f02 ≤ P x

FA. (19)

The optimum SR noise can also be expressed in terms of Cn,

such that

Copt
n (n) = λφ(n + n0) + (1 − λ)φ(n + n1). (20)

1In many cases, the optimal PD is achieved when the equality holds.
2This form of optimum noise pdf has not been proven to be unique.

There may exist other forms of noise pdf that achieve the same detection
performance.
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Let F1,max(t) = sup(f1 : (f1, f0) ∈ U, f0 = t).For any noise

pn, we have

P y
D(pn) ≤

∫
F1,max(f0)pn,f0(f0)df0. (21)

From Theorem 1, some useful conclusions can be drawn.

Lemma 1: Let F1M = max(F1,max(t)). If there exists a

to such that to < F0(0) and F1,max(to) = F1M , the optimum

noise pdf with F0(no) = no and F1(no) = F1M can be written

as

P opt
n (n) = δ(n − no), (22)

where the noise is now deterministic.

Lemma 2: If F1,max(f0) is continuously differentiable,

then the line connecting (f11, f01) and (f12, f02) is the co-

tangent line of F1,max(·). Furthermore, if F1,max(f0) is mono-

tonically increasing, P y
FA,opt = P x

FA.
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Fig. 1. Relationship between f1 and f0. The green dashed region is the
region where a possible SR effect may take place and provides the conditions
required for potential performance improvement.

Depending on the specific properties of F1,max, we may also

determine the improvability of this detector by adding SR

noise. The sufficient conditions of improvability and non-

improvability are given in the following theorems.

Theorem 2 (Improvability of Detection via SR): Suppose

F1,max is second-order continuously differentiable around

F0(0). If F ′′
1,max(F0(0)) > 0, then there exists at least one

noise process n with pdf pn(·) that can improve the detection

performance.

Theorem 3 (Non-improvability of Detection via SR): If

there exists a monotonic, non-decreasing concave function

Ψ(f0) where Ψ(F0(0)) = F1,max(F0(0)) = F1(0) and

Ψ(f0) ≥ F1,max(f0) for every f0, then P y
D ≤ P x

D for any

independent noise, i.e., the detection performance can not be

improved by adding noise.

IV. A DETECTION EXAMPLE

Here, we consider the same detection problem as considered

by Kay [6]. {
H0:x[i] = w[i]
H1:x[i] = A + w[i] , (23)
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Fig. 2. P y
D as a function of signal level A in Gaussian mixture noise (µ = 3

and σ0 = 1). When A ≥ µ, adding any non zero symmetric noise will only
decrease the detection performance. Therefore, the detection performance of
“opt sym”, “opt Unif”, “opt WGN” and “NO SR” are the same when A ≥ µ.

for i = 0, 1, · · · , N − 1, A > 0 is a known dc signal, and w[i]
is i.i.d symmetric Gaussian mixture noise pdf

pw(w) =
1
2
γ(w;−µ, σ2

0) +
1
2
γ(w;µ, σ2

0), (24)

where γ(w;µ, σ2) = 1√
2πσ2 exp

[
− (w−µ)2

2σ2

]
, µ = 3, A = 1

and σ0 = 1. A suboptimal detector is considered with test

statistic

T (x) =
1
N

N−1∑
i=0

(
1
2

+
1
2

sgn (x[i])
)

=
1
N

N−1∑
i=0

�x[i], (25)

where �x[i] = 1
2 + 1

2 sgn (x[i]). From (25), this detector is

essentially a fusion of the decision results of N i.i.d. sign

detectors (N = 1). When N = 1, comparing the model (1)

and the model (23), for each detector, we have test statistic

T1(x) = x, threshold η = 0 and P x
FA = 0.5. The distribution

of x under the H0 and H1 hypotheses can be expressed as

p0(x) =
1
2
γ(x;−µ, σ2

0) +
1
2
γ(x;µ, σ2

0), (26)

p1(x) =
1
2
γ(x;−µ + A, σ2

0) +
1
2
γ(x;µ + A, σ2

0), (27)

respectively. The critical function is given by

φ(x) = 1 x > 0, 0 x ≤ 0.

The problem of determining the optimal SR noise is to find

the optimal p(n) where for the new observation y = x + n,

the P y
D = p(y > 0;H1) is maximum while the P y

FA = p(y >
0;H0) ≤ P x

FA = 1
2 . When N > 1, it can be shown that the

TABLE I

COMPARISON OF DIFFERENT DETECTION PERFORMANCE FOR DIFFERENT

SR NOISE PDF.

SR popt
n popt

s popt
u popt

g No SR

P y
D 0.6915 0.6707 0.6011 0.5807 0.5114
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detection performance is monotonically increasing with P y
D

when the probability of false alarm P y
FA = 1

2 . Therefore, as

we restrict the additive noise n to be an i.i.d noise, the optimal

noise of N > 1 is the same as N = 1 for each data sample. In

the following discussion, we only consider the one sample case

(N = 1). The performance of the N > 1 case can be derived

similarly. From (10) and (13), it can be shown that in this

case, F1(x) = 1
2Q(−x−µ−A

σ0
) + 1

2Q(−x+µ−A
σ0

) and F0(x) =
1
2Q(−x−µ

σ0
) + 1

2Q(−x+µ
σ0

), where Q(x) =
∫ ∞

x
1√
2π

e
−t2

2 dt. It

also follows that f1 > f0 is monotonically increasing with

f0. Therefore, F1,max(f0) = f1. From Lemma (2), it can be

shown that popt
n (n) = 0.3085δ(n + 3.5) + 0.6915δ(n − 2.5),

and P y
D,opt = 0.6915. We also determine the optimal SR

noise parameters for three different types of noise pdf, namely

symmetric noise with arbitrary pdf ps(x), white Gaussian

noise pg(x) = γ(x; 0, σ2) and white uniform noise pu(x) =
1
a , a > 0, ,−a

2 ≤ x ≤ a
2 . The noise altered data process

are denoted as ys, yu and yg , respectively. For the arbitrary

symmetrical noise case, given that A < µ, σ0 < σ1 and µ large

enough (2µ±A > 3σ0), we have popt
s = 1

2δ(x−µ)+ 1
2δ(x+µ)

and P ys

D,opt = 1
2Q

(
− A

σ0

)
+ 1

4 = 0.6707, the maximum value

of P ys

D is not dependent on µ. Similarly, for the uniform

noise cases, aopt = 8.4143; for the Gaussian noise case,

σ2
opt = 7.6562. Table I shows the different P y

D,opt for these

different types of SR noise. Fig. 1 shows the relationship

between f1 and f0. The green dashed region is the region

of (f1, f0) where a possible SR effect may take place and

provides the conditions required for potential performance

improvement. Fig. 2 shows P x
D as well as the maximum

achievable P y
D with different values of A. The detection

performance is significantly improved by adding optimal SR

noise. The maximum detection performance of different SR

noise enhanced detectors w.r.t σ0 are shown in Fig. 3. Fig

4 shows the ROC curve for this detection problem when

N = 30. As expected, the optimum SR detector provides

superior detection performance.
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D as a function of σ0 for different types of noise when µ = 3 and

A = 1. The improvement of PD monotonically decreases when σ0 increases.
When σ0 > σ1, the detection performance can not be improved by adding
SR noise.

V. CONCLUDING REMARKS

In this paper, we have outlined the fundamental mechanism

responsible for enhanced SR detection. The exact form of

the optimal SR noise pdf has been proposed. Further, we

establish the conditions of potential improvement of PD via

the SR effect.The optimal SR noise is shown to be a proper

randomization of no more than two discrete dc signals. For

some suboptimal detectors, we show that under some condi-

tions, adding an appropriate noise may improve its detection

performance. By adding the optimal SR noise to the observed

data process, a significant improvement of PD is reported.

Details are found in [9], [10].
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