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ABSTRACT

The paper concerns the radiographic non-destructive testing
of well-manufactured objects. The detection of anomalies is
addressed from the statistical point of view as a binary hy-
pothesis testing problem with nonlinear nuisance parameters.
A new detection scheme is proposed as an alternative to the
classical GLR test. It is shown that this original decision rule
detects anomalies with a loss of a negligible (ε) part of opti-
mality with respect to an optimal invariant test designed for
the “closest” hypothesis testing problem with linear nuisance
parameters.

1. INTRODUCTION

For radiographic inspection of industrial objects (nuclear fuel
rods, for example), it is desirable to detect defects, inclusions
or any unexpected cavities in order to assure the safety and
reliability of installations. Often, the number of projections
and/or view angles available for inspection is very limited and
the pixel-by-pixel reconstruction is impossible.

The defect detection problem is based on the assump-
tion that the imaged medium is composed of an (partially)
unknown background with a possibly hidden anomaly. It is
considered as a parametric hypotheses testing problem be-
tween two composite alternatives with nonlinear nuisance pa-
rameters. A key assumption is the existence of a nonlinear
parametric parsimonious model of the non-anomalous back-
ground to counterbalance the lack of observations. The Gen-
eralized Likelihood Ratio (GLR) test [1, 2], which is usually
used to solve this kind of problem, has three major drawbacks:
1) this tool is relevant when the number of observations is
very large but it is often suboptimal for a limited number
of observations; 2) the GLR test requires to estimate the un-
known parameters before taking a decision, which is difficult
in a nonlinear case and 3) the GLR test makes no distinction
between the nuisance parameters with respect to their impact
on the nonlinearity of the model, which is not relevant from
the practical point of view. A new detection scheme is pro-
posed as an alternative to the GLR test: it detects anomalies
with a loss of a negligible (ε) part of optimality with respect
to an optimal invariant test designed for the “closest” hypoth-
esis testing problem with linear nuisance parameters. This
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paper is organized as follows. First, a parametric-based ap-
proach which includes the nonlinear parsimonious paramet-
ric model of the inspected object and radiographic process is
presented in section 2. Secondly, in section 3, an ε-optimal
test is designed to detect anomalies in the presence of nonlin-
ear nuisance parameters. Finally, some experimental results
with real radiographies show the relevance of the theoretical
developments in section 4.

2. PROBLEM STATEMENT: ANOMALY
DETECTION IN PARAMETRIC TOMOGRAPHY

2.1. Nuclear fuel rod inspection
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Fig. 1. Geometry of the nuclear fuel rod inspection system.

A nuclear fuel rod is composed of a body and a plug as
shown in Fig. 1. The body is manufactured separately from
the plug and, before its use, the plug is welded with the body.
The goal of the nuclear fuel rod inspection is to detect defects
(anomalies) in the welding zone which corresponds to a tan-
gential part of the fuel rod (see Fig. 1). During the monitoring
process, the nuclear fuel rod is imaged with a tomographic
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system composed of a X-source and a planar detector. The
fuel rod is put into a compensator which is made of the same
material to avoid the high contrast of radiography near the
edges of the fuel rod. The goal is to decide between the two
possible situations: H0 = {there is no anomaly} and H1 =
{there is at least one anomaly}.

2.2. Physical background

To simplify the problem, the parallel-beam geometry is used
in the paper and the X-rays are all oriented along the z-axis
(see Fig. 1). The planar detector coincides with the xOy-
plane. The measurements ζ(x, y) at different points (x, y) of
the detector are modeled as independently distributed random
variables [3] such that:

ζ(x, y) ∼ Π(m(x, y)) = Π(µ(x, y) + ω(x, y)), (1)

where Π(m) denotes the Poisson law with parameter m > 0.
The unknown quantity µ(x, y) (resp. ω(x, y)) represents the
mean number of photons passing through the media (resp. the
mean number of extra photons, caused primarily by scattered
radiations) at the position (x, y).

Let r be the radius of the fuel rod and l(x, y; r) be the
material (the fuel rod together with the compensator) thick-
ness corresponding to the location (x, y) on the detector (see
Fig. 1). It is assumed that an unknown value of r belongs to
the interval I = [r0 − �; r0 + �], where � is a small positive
constant and r0 is exactly known. It is assumed that the quan-
tity µ(x, y) can be well approximated [4] by the polynomial
function:

µ(x, y) ≈ µ̂(x, y; r, a0,a) = a0 +
na−1∑
k=1

ak lk(x, y; r), (2)

where a = (a1 a1 a2 . . . ana−1)
T is the vector of coeffi-

cients, and the impact of scattered radiations can be approxi-
mated by a bivariate polynomial function:

ω(x, y) ≈ ω̂(x, y;b) =
nx∑

u=0

ny∑
v=0

bu,vxuyu, (3)

where b = (b0,0 b1,0 . . . bnx,ny
)T . To avoid the redundancy

with the term b0,0 in (3), the term a0 from equation (2) is omit-
ted in the rest of the paper. It is assumed that the vector a be-
longs to a compact set Ka ⊂ R

na−1 and the vector b belongs
to a compact set Kb ⊂ R

nb with nb = (nx + 1)(ny + 1) to
warrant the validity of the approximation given by equations
(2) and (3).

2.3. Measurement model

By considering equations (2) and (3), equation (1) can be
rewritten as:

ζ(x, y) ∼
{

Π(m(x, y)) under H0

Π(θ(x, y) + m(x, y)) under H1
(4)

where θ(x, y) represents the local (at (x, y)) variation of the
mean number of X-photons arrived on the planar detector
due to the anomaly at the position (x, y). For the consid-
ered problem, the exposure time and the X-flux intensity are
high enough to warrant a good signal-to-noise ratio. Con-
sequently, the Gaussian approximation of the Poisson distri-
bution is relevant, which leads to a more tractable detection
problem when anomalies are unspecified. Hence, the mea-
surement model (4) is approximated by the following one:

ζ(x, y) =
{

m̂(x, y; c) + ξ(x, y) under H0

θ(x, y) + m̂(x, y; c) + ξ(x, y) under H1
,

with m̂(x, y; c) = µ̂(x, y; r,a)+ω̂(x, y;b), c = (r,a,b)∈K,
K = I × Ka × Kb ⊂ R

nc+1, nc = na + nb and
ξ(x, y) ∼ N (0, σ2(x, y)). The standard deviation σ(x, y)
is defined by σ(x, y) = ν(m̄(x, y))

1
2 where 0 ≤ ν ≤ 1 is

a known experimental coefficient independent of (x, y) and
m̄(x, y) is an experimental mean value for m(x, y).

The planar detector, which is composed of n = nx ny dis-
crete sensors, can be viewed as a nx × ny matrix. Let us note
ζi,j the sensor measurement at the row i and the column j.
By denoting vec({ζi,j}) the lexicographical ordering of mea-
surements ζi,j , the above approximated measurement model
can be rewritten:

Ξ=vec({ζi,j}) =
{

M(c) + ξ under H0

θ + M(c) + ξ under H1
, (5)

where θ = vec({θi,j}), M(c) = vec({m̂i,j(c)}) and ξ =
vec({ξi,j}). The random vector ξ ∼ N (0,Σ) follows the
n-dimensional Gaussian law with a zero mean and a known
diagonal positive definite covariance matrix Σ.

3. ANOMALY DETECTION: HYPOTHESES
TESTING WITH NUISANCE PARAMETERS

3.1. Hypotheses testing: problem statement

Since the matrix Σ is known, the testing problem (5) consists
of choosing between the two alternatives:

H0 ={y ∼ N (θ + H(c), In); θ = 0, c∈K} (6)

H1 ={y ∼ N (θ + H(c), In); θ �=0, c∈K}, (7)

with y = Σ− 1
2 Ξ, H(c) = Σ− 1

2 M(c) and Σ− 1
2 is the square-

root matrix of Σ−1 such that Σ− 1
2 Σ− 1

2 = Σ−1.
Let Kα = {δ : supc∈K Prθ=0,c(δ(y) = H1) ≤ α} be

the class of tests δ : R
n �→ {H0,H1} with upper-bounded

maximum false alarm probability, where the probability Prθ,c

stands for the vector of observations y being generated by the
distribution N (θ + H(c), In) and α is the prescribed prob-
ability of false alarm. The power function β is defined with
the probability of detection: β(θ; c) = Prθ �=0,c(δ = H1).
The subtlety of the above mentioned hypotheses testing prob-
lem consists of choosing between H0 and H1 with the best
possible performance indexes (α, β) while considering c as a
nonlinear nuisance parameter.
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3.2. Hypotheses testing: optimal and suboptimal tests

In the case of a vector parameter θ, the crucial issue is to find
an optimal solution over a set of alternatives which is rich
enough. Unfortunately, Uniformly Most Powerful (UMP)
tests scarcely exist, except when the parameter θ is scalar,
the family of distributions has a monotone likelihood ratio,
and the test is one-sided [5]. Moreover, due to the fact that
the vector-function c �→ H(c) is nonlinear and the nuisance
parameter vector c belongs to a compact K, the direct appli-
cation of the theory of invariant tests to the problem given by
equations (6)-(7) is also compromised.

To provide a remedy for this situation, the following ap-
proach is developed in the paper. First, since the measurement
model nonlinearity is related to the geometrical imperfections
of the fuel roads, it is proposed to design a linear parametric
model of the exactly-shaped fuel rod. Secondly, an ε-optimal
test is designed with respect to an optimal invariant test based
on the “closest” linear model [1, 6, 7, 8].

Definition 1 A test δ ∈ Kα is called ε-optimal on the region
Θ with respect to an optimal one δ∗ ∈ Kα if there exists a
(small) positive constant ε > 0 such that

sup
θ∈Θ,c∈K

| βδ(θ; c) − βδ∗(θ; c) |≤ ε. (8)

3.3. Optimal invariant test: linear nuisance parameters

Let us consider the hypotheses testing problem given by equa-
tions (6)-(7) in the linear case: H(c) = Hc, where H is a
known full column rank matrix of size n × nc. In the ex-
perimental context this means the radius r is known and only
beam hardening and X-scattering parameters are unknown:
c = (aT ,bT )T .

Let us note P⊥
H = In − H(HT H)−1

HT the orthogonal
projection on the null space of the matrix H and let S be the
family of surfaces S = {Sc : c > 0} with

Sc = {θ : ‖P⊥
H θ‖2

2 = c2}. (9)

Then, it is shown [8, 9] that the test

δ∗(y) =
{

H0 if Λ(y) = ‖P⊥
H y‖2

2 < γα

H1 else
, (10)

where the threshold γα is chosen to satisfy the false alarm
bound α, Prθ=0,c(Λ(y) ≥ γα) = α, is Uniformly Best Con-
stantly Powerful (UBCP)1 in the class Kα over the family of
surfaces S (9). The statistics Λ is distributed according to the
χ2 law with n−nc−1 degrees of freedom. This law is central
under H0 and non-central under H1 with the non-centrality
parameter λ2(θ) = θT P⊥

H θ.

1A test δ̄ ∈ Kα is UBCP on S if 1) βδ̄(θ′) = βδ̄(θ′′), ∀θ′, θ′′ ∈ Sc;
2) βδ̄(θ) ≥ βδ(θ), ∀θ ∈ Sc, ∀c > 0 for any test δ ∈ Kα which satisfies
1).

3.4. E-optimal test: nonlinear nuisance parameters

A bit of algebra shows that:

H(c) = Σ− 1
2 F (r)a + Σ− 1

2 Gb, (11)

where F (r) = (F1(r) . . . Fna(r)) is an n × na matrix, G =
(G1 . . . Gnb

) is an n × nb matrix, Fk(r) = vec
({lki,j(r)}),

Gk = vec
({xu

i yv
j }

)
such as k = u (ny + 1) + v + 1. The

second-order approximation of the function F (r) around r0

leads to:

F (r) = F (r0) + �0Ḟ (r0) +
1
2
�20F̈ (r0) + �20κ(�0), (12)

where �0 = r−r0, limr→0 κ(r) = 0 and Ḟ (r0) (resp. F̈ (r0))
is the n × na matrix of first order (resp. second-order) deriva-
tives of F at r0. From (11) and (12), it follows that:

H(c) = H1(�0)x + H2(r0)�20a + �20κ(�0),

where H1(�0) = Σ− 1
2

(
F (r0) + �0Ḟ (r0) G

)
is an unknown

n × (na + nb) matrix, x = (aT ,bT )T
and H2(r0) =

Σ− 1
2 F̈ (r0). Hence, it appears that the non-linear function

H(c) can be rewritten as a sum of two a priori non-negligible
linear terms: the nominal part H1(�0)x representing nui-
sances and the residual part H2(r0)�20a representing model
errors due to the linear approximation, and a negligible term
�20κ(�0). Let us define now the following approximation to
the initial hypotheses testing problem (6)-(7):

H0 ={y∼N (θ+H1(�0)x+H2(r0)�20a, In); θ=0} (13)

H1 ={y∼N (θ+H1(�0)x+H2(r0)�20a, In); θ �=0}, (14)

where | �0 |≤ � and x ∈ Ka×Kb, by omitting the negligible
term �2

0κ(�0).
Since the measurement model is linear according to the

nuisance parameter x, it is necessary to reject it by using the
orthogonal projection P⊥

H1(�0)
. Unfortunately, the projection

matrix depends on the unknown difference �0 = r − r0 and,
hence, the computation of P⊥

H1(�0)
is impossible. For this rea-

son it is proposed to reject the whole vector space R (H0)
spanned by the columns of H0 = Σ− 1

2 (Ḟ (r0) F (r0) G).
Indeed, it is straightforward to verify that R (H1(�0)) ⊂
R (H0) for all | �0 |≤ � and the space R (H0) is the minimal
space (in the inclusion sense) which contains all subspaces
R (H1(�0)). We finally obtain the test δ defined by:

δ(y) =

{
H0 if Λ(y) = ‖y‖2

2 = ‖P⊥
H0

y‖2

2
< γα

H1 else
, (15)

where the threshold γα is chosen to satisfy the false alarm
bound α: Prθ=0,c(Λ(y) ≥ γα) = α. Then, it is shown (the
proof is omitted) that there exists a small constant ε > 0 such
that

sup
θ∈Θm

sup
c∈K

| βδ∗(θ; c) − βδ(θ; c) |≤ ε. (16)
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Hence, the test δ is ε-optimal on Θm = R (H0)
⊥ with respect

to the optimal one δ∗ when the radius r0 is known. Here, the
subspace Θm corresponds to detectable anomalies (see [9] for
more details).

4. EXPERIMENTAL RESULTS WITH REAL
RADIOGRAPHIES

Because of the limited volume of the paper, experimental re-
sults are not described in details. The planar detector is com-
posed of nx = 50 × ny = 100 sensors, i.e. n = 5000,
with a resolution of 0.030 mm, ν = 0.1749, α = 10−2,
� = 0.05 mm, na = 2 and nx = ny = 3. It is as-
sumed that a = (a1 a2)

T verifies −2 000 ≤ a1 ≤ 2 000 and
−20 000 ≤ a2 ≤ 20 000. Radiographies have the estimated
signal-to-noise ratio SNRdB = 10 log(SNR) ≈ 70.1 dB with
SNR = H(c)T Σ−1H(c).
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Fig. 2. (a) Radiography y1 of a safe fuel rod, (b) residuals
y1 = P⊥

H0
y1 of the radiography (a), (c) radiography y2 of a

fuel rod with an anomaly, (d) residuals y2 = P⊥
H0

y2 of the
radiography (c).

When the inspected object is anomaly-free (see radiogra-

phy y1 in Fig. 2(a)), the unknown background is properly re-
jected and the residuals are close to a stationary “white noise”
(see Fig. 2(b)). Fig. 2(c) presents a radiography y2 with an
anomaly. This leads to the residuals with an “anomaly sig-
nature” (white and black spots) as shown in Fig. 2(d). Un-
der H0, the decision function is Λ(y1) = 4 986.02 < γ0.01

with γ0.01 = 5222.27. Under H1, its value is Λ(y2) =
5 883.24 > γ0.01. Since anomalies are assumed to belong
to the detectable space Θm and the nuisance parameter space
K is bounded, the upper bound ε ≈ 10−3 is estimated by
sampling K to find the largest difference between the power
functions β∗ and βδ . The loss of optimality is almost negligi-
ble and the false alarm probability holds an acceptable level.

5. CONCLUSION

A parsimonious nonlinear parametric model is proposed to
describe radiographic non-destructive inspections (parametric
tomography). A new ε-optimal statistical test is developed to
solve the problem of anomaly detection. The experimental
results on real radiographic data confirm the relevance and
efficiency of the proposed solution.
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