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ABSTRACT

In this paper we propose decision schemes to distinguish between
the H0 hypothesis that range cells under test contain disturbance
only (i.e., noise plus interference) and the H1 hypothesis that they
also contain signal components along a direction which is a priori
unknown, but constrained to belong to a given subspace 〈H〉 of
the observables. The disturbance is modeled in terms of complex
normal noise vectors plus deterministic interference assumed to be-
long to a known subspace 〈J〉 of the observables. At the design
stage we resort to either the plain Generalized Likelihood Ratio Test
(GLRT) or the two-step GLRT-based design procedure. Moreover,
we assume that a set of noise only (secondary) data is available. A
preliminary performance analysis, conducted by resorting to simu-
lated data, shows that the one-step GLRT performs better than the
two-step GLRT-based design procedure.

1. INTRODUCTION

A High-Resolution Radar (HRR) can resolve a target into a number
of scattering centers depending on the range extent of the target, the
range resolution capabilities of the radar, and its operating frequency.
Measurements indicate that radar properties of several targets can be
modeled in terms of a set of scattering centers each parameterized
by its range, amplitude and, possibly, polarization ellipse.

Properly designed HRR’s allow significant improvements in
terms of detection performance as shown in [1], [2], [3] and ref-
erences therein. Those papers address adaptive radar detection of
distributed targets embedded in possibly non-Gaussian disturbance;
returns from target’s scattering centers are modeled as signals known
up to multiplicative deterministic factors. All of those papers rely
on the assumption that a set of secondary data, free of signal com-
ponents, but sharing the spectral properties of the data under test,
is available. The case of point-like targets assumed to belong to a
known subspace of the observables had been addressed in [4]. Fi-
nally, several detection algorithms for point-like or extended targets
in Gaussian noise are encompassed as special cases of the amazingly
general framework and derivation described in [5].

In this paper we attack adaptive detection of distributed targets
embedded in homogeneous Gaussian noise with unknown covari-
ance matrix plus interference; interference subspace is known and
linearly independent of the signal space. The possible useful sig-
nals are aligned with an unknown direction constrained to belong to
a given subspace of the observables. This model might be a viable
means to address adaptive detection in case of mismatched steering
vectors. It has been firstly proposed in [6] and [7] where detection
in presence of white noise with known and unknown power, respec-
tively, has been considered. Herein, we resort to a plain GLRT and

to a two-step GLRT-based procedure, a point better specified in the
following.

The paper is organized as follows: next section is devoted to
the problem formulation while the detector design is the object of
Section 3. Section 4 contains the performance assessment of the
proposed algorithms and, finally, Section 5 concludes the paper with
some remarks and hints for future work.

2. PROBLEM FORMULATION

Assume that an array of Na antennas senses KP range cells and that
each antenna collects Nt samples from each of those cells. Denote
by rk, k ∈ ΩP ≡ {1, . . . , KP }, the N -dimensional vector, with
N = NaNt, containing returns from the k-th cell. We assume that
the disturbance is the sum of colored noise and interference, mod-
eled as a deterministic signal; we want to decide between the H0

hypothesis that rk, k ∈ ΩP , contain disturbance only against the
H1 hypothesis that they also contain useful target echoes sk.

Moreover, we suppose that the sk’s can be modeled as sk =
αks ∈ C

N×1 with s being, in turn, a linear combination of r linearly
independent modes; in addition, the interference signals ik, k ∈
ΩP , are linear combinations of q, q + r ≤ N , linearly independent
modes. Otherwise stated, s and ik , k ∈ ΩP , are assumed to belong
to a r-dimensional subspace 〈H〉 and a q-dimensional subspace 〈J〉,
respectively. Thus, s and ik can be recast as s = Hp and ik =
Jqk, k ∈ ΩP , where p and qk, k ∈ ΩP , are r-dimensional and
q-dimensional complex vectors, respectively.

In the following we assume that the subspaces spanned by the
columns of the matrices H and J are known and that the matrix
[H J ] is full rank.

The noise vectors nk’s, k ∈ ΩP , are modeled as N -dimensional
complex normal vectors with unknown covariance matrix M . We
also suppose that KS secondary data, rk, k ∈ ΩS ≡ {KP +
1, . . . , KP + KS}, containing noise only, are available and that
the returns share the same statistical characterization of the noise
components in the primary data. Finally, we assume that the nk’s,
k ∈ ΩP ∪ ΩS , are independent random vectors.

Summarizing, the detection problem to be solved can be formu-
lated in terms of the following binary hypothesis test8>>>><>>>>:

H0 :

j
rk = Jqk + nk, k ∈ ΩP ,
rk = nk, k ∈ ΩS ,

H1 :

j
rk = αkHp + Jqk + nk, k ∈ ΩP ,
rk = nk, k ∈ ΩS ,

(1)

where we suppose that KS ≥ N and, as already stated, that r + q ≤
N .
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3. DETECTOR DESIGN

Denote by R = [RP RS ] the overall data matrix, where RP =
[r1 · · · rKP ] ∈ C

N×KP is the primary data matrix and RS =
[rKP +1 · · · rKP +KS ] ∈ C

N×KS is the secondary data matrix. More-
over let Q = [q1 · · · qKP

] ∈ C
q×KP , α = [α1 · · ·αKP ] ∈ C

1×KP ,
and K = KP + KS .

The above assumptions imply that the probability density func-
tion (pdf) of R can be written as

f0(R; M , Q) =

 
1

πN det[M ]

!K

e−tr
ˆ
M−1

`
T 0+S

´˜
(2)

under H0 and

f1(R; M , Q, p, α) =

 
1

πN det[M ]

!K

e−tr
ˆ
M−1

`
T 1+S

´˜
(3)

under H1, where det(·) and tr(·) denote the determinant and the
trace of a square matrix, respectively, S = RSR

†
S ∈ C

N×N is KS

times the sample covariance matrix based on secondary data, with †

being conjugate transpose, and T 0 and T 1 are given by

T 0 =
X

k∈ΩP

(rk − Jqk)(rk − Jqk)†

T 1 =
X

k∈ΩP

(rk − αkHp − Jqk)(rk − αkHp − Jqk)†.

3.1. One-Step GLRT-based Detector

We now derive the GLRT based upon primary and secondary data
which is tantamount to the following decision rule

Λ(R) =

max
α

max
p

max
Q

max
M

f1(R; M , Q, p, α)

max
Q

max
M

f0(R; M , Q)

H1
>
<
H0

γ, (4)

where γ is the threshold value to be set in order to ensure the desired
Probability of False Alarm (Pfa).

It can be shown that optimization under the H0 hypothesis leads
to the following compressed likelihood function

f0(R; cM , bQ) =

 
K

eπ

!NK
1

detK [S] detK [A]
, (5)

where A = IKP + (S−1/2RP )†(IN − PJS
)(S−1/2RP ), with,

in turn, IN denoting the N -dimensional identity matrix, JS =
S−1/2J , and PK the projection matrix onto the subspace spanned
by the columns of K .

On the other hand, optimization under the H1 hypothesis gives
the following compressed likelihood function

f1(R; cM , bQ, bp, bα) =

 
K

eπ

!NK
(det[S] det[A])−K

(1 − λmax{B})K
, (6)

where λmax{·} denotes the maximum eigenvalue of the matrix ar-
gument and

B = PH
′
S
Z

†
S

−1/2
RP A

−1
R

†
P S

−1/2
ZPH

′
S
,

with

• Z ∈ C
N×(N−q) a slice of a unitary matrix satisfying IN −

PJS
= ZZ†;

• H ′
S = Z†S−1/2H .

Substituting the above results (5) and (6) into test (4) yields

Λ(R) = λmax{B}
H1
>
<
H0

γ. (7)

3.2. Two-Step GLRT-based Detector

This subsection is devoted to the derivation of an ad hoc detector for
problem (1) based upon the two-step GLRT-based design procedure.
Specifically, first we derive the GLRT detector assuming that M is
known. Then we come up with a fully-adaptive detector by replacing
M with S. To this end, note that the pdf of RP is

f0(RP ; Q) =

 
1

πN det[M ]

!KP

e−tr
ˆ
M−1T 0

˜
,

under H0 and

f1(RP ; Q, p, α) =

 
1

πN det[M ]

!KP

e−tr
ˆ
M−1T 1

˜
,

under H1. The GLRT for known M is given by

Λ(RP ) =

max
α

max
p

max
Q

f1(RP ; Q, p, α)

max
Q

f0(RP ; Q)

H1
>
<
H0

γ. (8)

It is not difficult to show that test (8) can be re-cast as

e
λmax

j
P

H
′
w

Z†
wM−1/2RP R†

P M−1/2ZwP
H

′
w

ff H1
>
<
H0

γ,

where

• Zw ∈ C
N×(N−q) is a slice of a unitary matrix satisfying

IN − PJw = ZwZ†
w, with Jw = M−1/2J ;

• H ′
w = Z†

wM−1/2H .

The logarithmic GLRT is

log Λ(RP ) = λmax {C(M )}
H1
>
<
H0

γ, (9)

where

C(M ) = PH
′
w

Z
†
wM

−1/2
RP R

†
P M

−1/2
ZwPH

′
w

.

Note that C(M ) depends on M also through Zw and PH
′
w

. Fi-
nallly, plugging S in place of M into (9) yields the fully-adaptive
rule

λmax {C(S)}
H1
>
<
H0

γ, (10)

where

C(S) = PH
′
S
Z

†
S

−1/2
RP R

†
P S

−1/2
ZPH

′
S
.

As a final remark, it can be shown that in the case r + q = N ,
receivers (7) and (10) become equivalent; however, the proof of such
a statement is not reported here for the lack of space.
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4. PERFORMANCE ASSESSMENT

Since closed-form expressions for the Probability of Detection (Pd)
and the Pfa are not available, we resort to standard Monte Carlo
counting techniques. More precisely, in order to evaluate the thresh-
old necessary to ensure a preassigned value of Pfa and Pd, we resort
to 100/Pfa and 104 independent trials, respectively.

We randomly generate the columns of H and J at each itera-
tion of the Monte Carlo simulation as independent and identically
distributed (iid) complex normal vectors with zero mean and iden-
tity covariance matrix. In addition, the interference coordinates qk,
k ∈ ΩP , are iid complex normal vectors with zero mean and covari-
ance matrix given by σ2

JIq , where σ2
J is the power of the interfer-

ence and Iq denotes the q-dimensional identity matrix. The vector
p is a complex normal vector with zero mean and covariance matrix
given by Ir . In addition, above vectors are each other independent.
Finally, |αk| = |α|, k ∈ ΩP .

As to the noise, it is modeled as an exponentially correlated com-
plex normal vector with one-lag correlation coefficient ρ, namely the
(i, j)-th element of the covariance matrix M is given by σ2

nρ|i−j|,
i, j = 1, . . . , N , with ρ = 0.95 and σ2

n = 1.
The Pfa is set to 10−4 and the Signal-to-Noise Ratio (SNR) is

defined as

SNR =

PKP
k=1 |αk|

2E
ˆ
‖Hp‖2

˜
Nσ2

n

, (11)

where | · | denotes the modulus of a complex number, E[·] denotes
statistical expectation, and ‖ · ‖ is the Euclidean norm of an N -
dimensional vector over the complex field. Note that

E
ˆ
‖Hp‖2

˜
= tr

n
E
h
H

†
Hpp

†
io

= Nr.

Finally, we assume that the Interference-to-Noise Power Ratio (INR),
defined as σ2

J/σ2
n, is equal to 30 dB.

Figures 1-4 compare the performance, in terms of Pd versus
SNR, of the plain GLRT (7) and the ad hoc detector (10).

In particular, Figures 1 and 2 assume N = 8, KP = 8, and
KS = 16, and different values of parameters r and q. More pre-
cisely, in Figure 1 we set r = 2 and q = 2 while in Figure 2 we
set r = 4 and q = 2. In both figures, detector (7) performs slightly
better than detector (10), but note that when r increases the hori-
zontal displacement between the corresponding curves reduces (the
gain reduces from about 1.1 dB to 0.4 dB). Figures 3 and 4 refer to
N = 16, KP = 16, and KS = 16, and different values of param-
eters r and q; more precisely, Figure 3 assumes r = 2 and q = 2
while Figure 4 refers to r = 4 and q = 2. It is apparent that in the
scenarios of Figures 3 and 4 the GLRT performs much better than
the ad hoc detector.

Summarizing, figures highlight that detector (7) performs bet-
ter than detector (10) when r + q < N , with a gain depending on
simulation parameters.

5. CONCLUSIONS

In this paper we have implemented two GLRT-based direction de-
tectors capable to operate in homogeneous Gaussian noise and sub-
space interference. To this end, we have supposed that a set of noise
only data is available and that the useful target and the interference
belong to known subspaces of the observables. The preliminary per-
formance assessment highlights that the plain GLRT performs better
than the ad hoc detector, although at the price of a certain increase
of the computational complexity. However, simulation studies also

seem to indicate that the gains are in the order of 1 dB (or less) when
KS ≥ 2N . A definite validation of previous results will require a
thorough performance assessment also in comparison with other “ro-
bust” techniques capable to take into account possible uncertainties
on the actual steering vector of the target.
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Fig. 1. Pd vs SNR with N = 8, KP = 8, KS = 16, r = 2,
and q = 2 for detector (7) (circle marker) and detector (10) (triangle
marker).
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Fig. 2. Pd vs SNR with N = 8, KP = 8, KS = 16, r = 4,
and q = 2 for detector (7) (circle marker) and detector (10) (triangle
marker).
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Fig. 3. Pd vs SNR with N = 16, KP = 16, KS = 16, r = 2,
and q = 2 for detector (7) (circle marker) and detector (10) (triangle
marker).
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Fig. 4. Pd vs SNR with N = 16, KP = 16, KS = 16, r = 4,
and q = 2 for detector (7) (circle marker) and detector (10) (triangle
marker).
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