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ABSTRACT

This paper proposes a new method for mechanical fault de-
tection in induction motors. The detection strategy is based
on the estimation of a particular stator current parameter.
The considered mechanical faults cause periodic load torque
oscillations leading to a sinusoidal phase modulation of the
stator current. The modulation index is related to the fault
severity and can be used as a fault indicator. First, a simpli-
fied stator current model is proposed. The problem is then
equivalent to the parameter estimation of a sinusoidal phase
mono-component signal. Second, the maximum likelihood
estimator is implemented using evolution strategies for opti-
mization. The Cramer-Rao lower bounds are calculated and
compared to the estimator performance through simulations.
The estimation procedure is studied on experimental stator
current signals from faulty and healthy motors.

1. INTRODUCTION

Induction motors can be found in an increasing number of
applications from small motors in home and business appli-
cations to drives operating in high speed trains. The relia-
bility, productivity and safety of an installation containing
induction motors can be increased by an automatic and per-
manent monitoring system. Consequently, induction motor
fault detection and diagnosis is of great concern. Mechan-
ical faults are traditionally detected by monitoring and an-
alyzing vibration data. However, vibration measurement is
cost intensive and cannot always be realized. Alternatively,
the diagnosis can be based on the available electrical quan-
tities e.g. the stator current. The stator current is often al-
ready measured for control and protection purposes. This
study proposes a new detection method based on the max-
imum likelihood estimation of an appropriate stator current
parameter. This parametric approach first requires an appro-
priate fault model.

In this study, the influence of mechanical faults on the
induction machine is modeled by an additional sinusoidal
torque [1]. The total load torque Γ load expresses as:

Γload[n] = Γav + Γc cos (ωcn) (1)

where Γav is the average load torque, Γc the additional torque
amplitude and ωc the normalized characteristic angular fault
frequency, n = 0, . . . , N − 1. The magnetomotive force
(MMF) model and the permeance wave approach provide
the following expression of the stator current i[n] [1]:

i[n] = ist[n] + irt[n]

= Ist cos (ωsn + ϕs) + Irt cos
(
ωsn + β cos (ωcn)

)
(2)

β is the so-called modulation index of the sinusoidal phase
modulation and it can be shown that β ∝ Γc

ω2
c

. ωs is the nor-
malized angular supply frequency and ϕs the initial phase
angle between rotor and stator MMF depending on the mo-
tor load. ist[n] and irt[n] denote the stator current compo-
nents resulting from the stator and rotor MMF. The healthy
case is obtained for β = 0.

Hence, the proposed fault detection strategy is based on
the estimation of β from a discrete noisy observation of the
stator current. The estimate is used as a fault indicator be-
cause β is directly related to the amplitude Γc of the torque
oscillation and therefore to the fault severity. The estimate
of the modulation index can later be used for detection in a
binary hypothesis test. β is in general relatively small and
takes typically values in [0, 0.1]. The other signal parame-
ters are unknown and have also to be estimated in order to
obtain a correct estimate of β. Conventional fault detection
techniques compute a periodogram of the stator current and
use the amplitude of sideband peaks for fault detection [2].
Drawbacks are the need for a high number of samples and
the impossibility to distinguish phase modulation from am-
plitude modulation. Amplitude modulation can be the result
of other faults. Thus, the knowledge of the modulation type
is important for diagnosis purposes.

Section 2 describes an approximation of the faulty sta-
tor current by a monocomponent signal with a sinusoidal
phase modulation. This simplified signal model is used in
section 3 for the derivation of the maximum likelihood esti-
mator. The estimator algorithm is implemented using evolu-
tion strategies described in 3.2. The theoretical Cramer-Rao
bounds are calculated and compared to the estimator per-
formance in numerical simulations. Section 4 describes the
application of the estimator to mechanical load fault detec-
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tion. An experimental setup provides the necessary test data
and proves a good performance of the estimator for current-
based fault detection.

2. STATOR CURRENT MODEL

First, the current must be expressed in its analytical form
for an univocal phase definition [3]. Recall that if x[n] is
a real signal, the associated analytical signal is xa[n] =
x[n] + jH{x[n]} where H{.} denotes the Hilbert Trans-
form. For further processing, the complex stator current will
be demodulated. An estimate of the demodulation angu-
lar frequency ωs is obtained from a spectral estimate of (2).
The estimation is then performed on the complex envelope
id,a[n] of the real measured current:

id,a[n] = Ist exp jϕs + Irt exp j
(
β cos (ωcn)

)
(3)

The estimation problem complexity results from the pres-
ence of two components with the same average frequency
but with different amplitudes and phases. However, un-
der appropriate assumptions on the signal parameters, the
demodulated stator current id,a(t) can be approached by a
mono-component phase-modulated signal as follows:

id,a[n] = θ0 exp j [θ1 + θ2 cos (2πθ3n + θ4)] (4)

where θ = [θ0, θ1, θ2, θ3] are the unknown parameters. By
identification, parameters [θ0, θ1, θ2, θ3] can be related to the
physical parameters as follows:

θ0 = Ist

√
1 + γ2 + 2γ cosϕs, θ1 =

γ sin ϕs

γ cosϕs + 1

θ2 =
β

γ cosϕs + 1
, θ3 = fc, γ = Ist/Irt

The estimated parameter θ2 is proportional to the modula-
tion index. However, it also depends on the motor load level
through the ratio γ of the stator and rotor current amplitude
and the phase angle ϕs. θ4 is the initial phase of the modu-
lation.

3. PARAMETER ESTIMATION

3.1. Maximum Likelihood Estimation

This section estimates the modulation index β from demod-
ulated noisy stator current observations {z[n]}n=0,...,N−1.
Let {za[n] = z[n] + jH{z[n]}n=0,...,N−1 denote the stator
current observations in their analytical form. The additive
noise {ga[n]}n=0,...,N−1 is supposed complex white, zero-
mean and Gaussian with ga[n] = g[n] + jH{g[n]}. The
noise variance σ2 is supposed unknown.

Under this assumption, the maximum likelihood estima-
tor (MLE) can be derived. Moreover, this estimator is as-
ymptotically (i.e. for large data records) unbiased and its
variance approaches the Cramer-Rao Lower Bound (CRLB)
[4]. The MLE is obtained maximizing the noise probabil-
ity density function with respect to the parameter vector θ.

This problem can be seen as an extension of the parameter
estimation of a non-modulated sinusoidal signal [5].

The joint probability density function p(Z, θ) expresses
as [5]:

p(Z, θ) =
1

(2πσ2)N
exp

[
− 1

2σ2

N−1∑
n=0

|za[n] − id,a[n]|2
]

(5)
Maximizing p(Z, θ) is equivalent to maximizing the fol-

lowing expression L0(θ) with respect to θ [5]:

L0(θ) = − 1
N

N−1∑
n=0

|za[n] − id,a[n]|2 (6)

and finally, the estimation problem is equal to maximizing
L(θ) with:

L(θ) =
1
N

N−1∑
n=0

2 (z[n]id[n] + H{z[n]}H{id[n]}) − |id,a[n]|2

= −θ2
0 +

2θ0

N

N−1∑
n=0

z[n] cos (θ1 + θ2 cos (2πθ3n + θ4))

+ H{z[n]} sin (θ1 + θ2 cos (2πθ3n + θ4))
(7)

Straightforward derivations lead to:

L(θ) = −θ2
0+2θ0�

{
e−jθ1

1
N

N−1∑
n=0

za[n]e−jθ2 cos(2πθ3n+θ4)

}
(8)

where �{.} denotes the real part. Let define the complex
function

B(z, θ2, θ3, θ4) =
1
N

N−1∑
n=0

za[n]e−jθ2 cos(2πθ3n+θ4) (9)

L(θ) is maximized with respect to θ1 if the term in braces
{.} in equation (8) is real. This is the case if

θ1 = arg {B(z, θ2, θ3, θ4) } (10)

so that the function L(θ) becomes:

L(θ) = −θ2
0 + 2θ0 |B(z, θ2, θ3, θ4)| (11)

The value of θ0 that maximizes (11) is

θ0 = |B(z, θ2, θ3, θ4)| (12)

so that the function to maximize becomes

L(θ2, θ3, θ4) = |B(z, θ2, θ3, θ4)|2 (13)

Hence, the maximum likelihood estimation procedure can
be summarized as follows: first, the function |B(z, θ2, θ3, θ4)|
is maximized using numerical optimization and the parame-
ters (θ2, θ3, θ4) are obtained. The other parameters θ0 and
θ1 can be derived from the analytical expressions (10) and
(12).
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3.2. Optimization Method

The maximum of the function |B(z, θ2, θ3, θ4)| cannot be
found analytically. Therefore, numerical methods must be
used. The search space is relatively limited in this typical
application because the characteristic fault frequency θ3 and
typical values of the modulation index θ2 are well known
(θ2 ∈ [0, 0.1], θ3 ∈ [0.11, 0.125], θ4 ∈ [0, 2π]). First, a
grid search has been implemented with a fixed step size in
the search space. However, the computation was still time-
expensive, so that an evolutionary algorithm is finally used.

The implemented algorithm is a (µ + λ)-evolution strat-
egy. A comprehensive introduction can be found in [6]. The
algorithm is initialized by randomly placing a population
of µ parents in the search space. The λ children are cre-
ated using self-adaptive mutation with the advantage that
the standard deviation in the mutation process is automat-
ically adapted. In the following selection process, all the in-
dividuals are evaluated and the µ best individuals out of the
parents and children generation form the next parent gener-
ation. The algorithm continues with a new mutation cycle.
The algorithm stopping rule is a maximum number of 100
iterations. The number of parents and children is µ=10 and
λ=100. The evolution strategy shows a good performance
and computes about 10-20 times faster than the grid search.

3.3. Cramer-Rao Lower Bounds

The estimation mean square error results from estimation
bias and variance. The MLE is an unbiased estimator for
large data records i.e. the remaining error is the variance
in the case of independent and identically distributed ob-
servations. The Cramer-Rao lower bounds (CRLB) provide
an inferior bound for any unbiased estimator variance. The
MLE variance approaches asymptotically these bounds. The
CRLB are given by the diagonal elements of the inverse
fisher information matrix [F (θ)]:

var(θ̂i) ≥ [F−1(θ)]ii (14)

In the case of the probability density function given in (5),
the elements of the Fisher information matrix can be calcu-
lated using the following formula [5]:

[F (θ)]ij = 1
σ2

∑N−1
n=0

[
∂id[n]

∂θi

∂id[n]
∂θj

+ ∂H{id[n]}
∂θi

∂H{id[n]}
∂θj

]
(15)

For the considered estimation problem, [F (θ)] is sym-
metric and takes the following form:

[F (θ)] =

⎡
⎢⎢⎢⎢⎣
f00 0 0 0 0
0 f11 f12 f13 f14

0 f12 f22 f23 f24

0 f13 f23 f33 f34

0 f14 f24 f34 f44

⎤
⎥⎥⎥⎥⎦ (16)

The expressions of all matrix elements fii are given in ap-
pendix A. They match the more general results in [7].

In order to test the estimator performance, simulations
have been carried out using a monocomponent PM signal
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Fig. 1. Mean square estimation error of parameter θ2

and theoretical Cramer-Rao lower bound versus data record
length

with additive white gaussian noise. The chosen signal pa-
rameters are: θ0=1, θ1=0.5, θ2=0.005, θ3=0.125, θ4=0.3,
fs=0.25 and SNR=50 dB. The SNR was chosen lower for
the simulation as in reality in order to obtain a higher MSE.
The mean square error (MSE) was estimated using 1000
simulation runs for each data record length. The MSE to-
gether with the theoretical CRLB are displayed in Fig. 1 as
functions of the data record length. Obviously, the increase
in the data record length leads to a decreasing estimation
error which approaches the CRLB.

4. EXPERIMENTAL RESULTS

The experimental setup consists of an induction motor cou-
pled to a DC machine. The DC machine produces load
torque oscillations at rotational frequency through an arma-
ture current control. These torque oscillations are similar to
typical effects of mechanical load faults. The stator current
measurement is performed at a sampling rate of 25 kHz by
a 24-bit data acquisition board. The signal is further low-
pass filtered, downsampled to 200 Hz and processed using
Matlab.

The parameter estimation has been carried out on 183
data records, each composed of 64 samples. The introduc-
tion of a small torque oscillation with amplitude Γc=0.14
Nm allows to reproduce the effects of a mechanical fault.
The amplitude of the torque oscillation is only 0.8% of the
mean load torque. The histogram of the estimated modu-
lation index θ2 is shown in Fig. 2 for a set of healthy and
faulty data. The probability density functions are very dif-
ferent. A decision between the healthy and faulty case can
simply be made by considering an adequate threshold for
the modulation index θ2. The detection performances are
studied through the receiver operating characteristic (ROC)
curves. The ROC curves display the probability of detection
PD with respect to the probability of false alarm PF [4]. The
ROC curves (Fig. 3(a)) have been experimentally obtained
for several levels of load torque oscillation Γc with 18 Nm
average torque. An increase in Γc, equivalent to an increase
in fault severity, leads to a higher PD for the same value of
PF . The ROC approaches the ideal case where PD always
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Fig. 3. Experimental ROC and mean estimated modulation
index E[θ2] versus Γc for different average loads

equals 1, except for PD = 0.
The link between the estimated modulation index θ2 and

the fault severity has been experimentally verified by process-
ing data with different load torque oscillation amplitudes
and different average load torque levels. Fig. 3(b) shows
the mean estimated modulation index versus the amplitude
of the load torque oscillation. An increase in the torque os-
cillation amplitude, equivalent to an increase in fault sever-
ity, leads to a considerably higher modulation index for all
different load levels. The increase is approximately linear.
Hence, a critical level of torque oscillation can be fixed and
a decision about the motor condition can be taken based on
the estimation of θ2.

5. CONCLUSION

This paper presented a new approach to mechanical fault de-
tection in induction motors based on stator current monitor-
ing. The fault-related load torque oscillations produce char-
acteristic sinusoidal phase modulations of the stator current.
The modulation index depends on the torque oscillation am-
plitude and is therefore an indicator for the fault severity.
A maximum likelihood estimation procedure was proposed
in order to estimate the modulation index. This presents an
advantage over methods based on classical spectral analysis
because the fault indicator is directly obtained. Furthermore,
shorter data records can be used and the type of modulation
can be identified.

The theoretical Cramer-Rao lower bounds of the esti-

mation variance were calculated. The estimator was imple-
mented using evolution strategies for numerical optimiza-
tion. The estimator performance was tested by simulations
and approaches the Cramer-Rao bound. The estimation pro-
cedure was successfully tested on experimental stator cur-
rent data from healthy and faulty motors. A simple detec-
tor based on a threshold for the modulation index was pro-
posed. ROC curves and mean estimated modulation indices
demonstrate the effectiveness for different levels of torque
oscillation.
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A. ELEMENTS OF THE FISHER INFORMATION
MATRIX

f00 = N
σ2 , f11 = θ2

0
σ2 N

f12 = θ2
0

σ2

∑N−1
n=0 cos (2πθ3n + θ4)

f13 = θ2
0

σ2 (−2πθ2)
∑N−1

n=0 n sin (2πθ3n + θ4)

f14 = θ2
0

σ2 (−θ2)
∑N−1

n=0 sin (2πθ3n + θ4)

f22 = θ2
0

σ2

∑N−1
n=0 cos2 (2πθ3n + θ4)

f23 = θ2
0

σ2 (−2πθ2)
∑N−1

n=0
1
2n sin (4πθ3n + 2θ4)

f24 = θ2
0

σ2 (−θ2)
∑N−1

n=0
1
2 sin (4πθ3n + 2θ4)

f33 = θ2
0

σ2 (2πθ2)
2 ∑N−1

n=0 n2 sin2 (2πθ3n + θ4)

f34 = θ2
0

σ2 2πθ2
2

∑N−1
n=0 n sin2 (2πθ3n + θ4)

f44 = θ2
0

σ2 θ2
2

∑N−1
n=0 sin2 (2πθ3n + θ4)
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