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ABSTRACT

An adaptive matched subspace CFAR detector of gaussian distributed

signals is analyzed. The detector is an extension of the one devel-

oped in [2] to the case of unknown disturbance covariance matrix.

This matrix is estimated from secondary data which can be non ho-

mogenous. In this latter case we use a robust estimate of the co-

variance matrix based on the sample spatial sign covariance matrix

(SSCM). The performance of the adaptive scheme, specifically, the

impact on the false alarm rate is studied by means of Monte Carlo

simulations. The results show that the adaptive detector using the

SSCM maintains the false alarm approximately constant in non ho-

mogenous situations.

1. INTRODUCTION

Detecting subspace signals in the presence of noise is a common

problem in multidimensional signal processing. In [2], Gini et al..
studied a matched subspace CFAR detector of hovering helicopters,

where the target was modeled as a subspace random signal in the

presence of a compound Gaussian disturbance. Later, in [3] the

same signal model was applied to detect and classify targets be-

longing to different classes in the presence of complex Gaussian

noise with known covariance matrix. In real situations, this quantity

must be adaptively estimated from signal free secondary data and the

well known sample covariance matrix estimate leads to poor perfor-

mances in the presence of non homogeneities in the secondary data.

In this case we must resort to robust methods to estimate the covari-

ance matrix. Many algorithms were proposed to deal with this situ-

ation, among them, the non homogeneity detector (NHD), recently

proposed by Rangswamy et al. [6]. Using the NHD, one can select

the cell containing the non homogeneity and eliminate it from the

covariance estimation process using the sample covariance matrix.

But in practical situations, the secondary data is not large enough to

give a good estimate and using the NHD as a pre-processing step, re-

duces considerably the quantity of secondary data, causing a drastic

degradation in the estimation process. In this paper, we use a robust

method based on the spatial sign covariance matrix (SCM) [4], to

estimate the unknown noise covariance matrix. Simulation results

demonstrate that, under certain conditions, the sample spatial sign

covariance matrix (SSCM), maintains the false alarm constant in the

non homogenous secondary data.

2. PROBLEM STATEMENT AND DATA MODEL

Consider a radar which collects N pulses during the time on tar-

get. These pulses form the complex valued received vector z =
[z(0), z(1), ...., z(N − 1)]T . The detection problem can be seen as

a binary hypotheses test :

{
H0 : z = d
H1 : z = d + s

(1)

The disturbance d is modeled as a complex Gaussian distributed

random vector with zero mean and covariance matrix

Md = E
{
zzH

}
= σ2

dM, where (.)H is the conjugate transpose op-

erator, σ2
d is the power of each disturbance component and M is the

normalized covariance matrix, i.e.[M]i,i = 1 for i = 1, 2, ..., N. We

assume that M is full-rank. In a shorthand notation d ∼ CN(0, σ2
dM).

Also, the signal vector s ∼ CN(0, σ2
sMs), with covariance ma-

trix M
′
s = E

{
ssH

}
= σ2

sMs, where Ms is the normalized co-

variance matrix and σ2
s is the signal power. We assume that the

rank of Ms is equal to r. This target signal model is equivalent

to the linear Gaussian model [3] where the signal vector s is mod-

eled as s = Usβs, βs is the r × 1 mode weight random vec-

tor βs ∼ CN(0, σ2
sΛs), Λs is the r × r diagonal matrix of non

zero eigenvalues of the matrix Ms and Us is the N × r unitary

matrix of corresponding eigenvectors, called the mode matrix. We

obtain E
{
ssH

}
= UsE

{
βsβ

H
s

}
UH

s = σ2
sUsΛsU

H
s = σ2

sMs,

(Ms= UsΛsU
H
s is the eigen decomposition of Ms). The projec-

tion matrix on the signal subspace is then given by:

Ps = Us(U
H
s Us)

−1UH
s . As in [2], we assume only knowledge

of the mode matrix Us but σ2
s and Λs are unknown. This means

that we know the subspace were the target signal lies, but we do not

know the corresponding power of each component.

3. CFAR DETECTION

Gini et al. [2], developed a CFAR detection algorithm based on the

GLRT principle for known M. The obtained results are reported

here without details. The detection statistic based on the GLRT is

given by :

L(z) =

max
βs,σ2

d

fZ|H1(z | H1, βs, σ
2
d)

max
σ2

d

fZ|H0(z | H0, σ2
d)

H1
≷
H0

η (2)

the conditional pdf under hypothesis H1 is given by:

fZ|H1(z | H1, βs, σ
2
d) =

1

(πσ2
d)

N
2 |M|

exp(− (z − Usβs)
HM−1(z − Usβs)

σ2
d

)

(3)

The pdf under H0 is obtained from (3) by setting βs = 0.
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Replacing the ML estimates of the unknown parameters in (2)

(see [1] for more details), the test statistic can be written as:

zHQsz

zHM−1z

H1
≷
H0

λ (4)

where Qs = M−1Us(U
H
s M−1Us)

−1UH
s M−1 and the threshold

λ is selected to provide the desired probability of false alarm PF =
α0.

Using the Cholesky factorization M = LLH , were L is an

N × N lower triangular matrix, we obtain the whitened vector

x = L−1z and the whitened target signal vector qs = L−1s. The

projection matrix onto the new signal subspace is

Ps = L−1Us(U
H
s M−1Us)

−1UH
s L−H . After some easy algebra,

we can express the detector (4) as:

Γ(x) =
xHPsx

xH(I − Ps)x

H1
≷
H0

γ (5)

We note that the quantity I−Ps represents the projection matrix

on the subspace orthogonal to the signal subspace spanned by the

projection matrix Ps.

False alarm probability

The false alarm probability is given by PF = Pr{Γ(x) > γ |
H0}. In [5], it is shown that the quadratic form xHPsx ∼ χ2

2r

and the denominator xH(I − Ps)x ∼ χ2
2(N−r). Therefore, since

the numerator and denominator are mutually independent, the statis-

tic F = xHPsx/(2r)

xH (I−Ps)x/(2N−2r)
is distributed according to an F dis-

tribution with 2r and 2(N − r) degrees of freedom, were r =
rank(Ms).The change of variable of the form W = F/(1 + F )
transforms the F distribution into a Beta one given by:

fW (w) =
(N − 1)!

(r − 1)!(N − r − 1)!
wr−1(1 − w)N−r−1,

0≤ w ≤ 1 (6)

We have then: PFA = Pr{Γ(x) > γ | H0} = Pr{F > η} =
Pr{W > ξ}, where η = γ(N − r)/r and ξ = η/(1 + η), we have

then:

PFA=1− (N − 1)!

(r − 1)!(N − r − 1)!

ξ∫
0

wr−1(1 − w)N−r−1dw (7)

It is important to highlight that the false alarm depends only on the

number of pulses N and on the rank of the signal covariance matrix

r. Thus the detector has the desired CFAR property with respect to

σ2
d, βs,Ms and M. The threshold is derived from (7).

4. ADAPTIVE DETECTION

In the previous sections, M is supposed a priori known. But, in

practice, it must be adaptively estimated from secondary data, and

the performance of the resulting detector is highly dependent on the

accuracy of the estimation procedure. The secondary data must be

representative of the samples in the test cell. Generally, we take L
cells that are just in the neighborhood of the test cell and the simplest

way to estimate the covariance matrix, is to use the sample covari-

ance matrix Sav = 1
L

L∑
i=1

xix
H
i , which is the well known maximum

likelihood (ML) estimator. When the secondary data are homoge-

nous, the performance of this method is optimal. If the assumption of

the homogeneity of the data is violated, for example, in the presence

of interfering targets or/and clutter edge in the secondary data, the

result can become dramatic. This is the dominant situation in a radar

environment. One solution for this case is to use a pre-processing

technique in order to select a representative set of data from the con-

taminated data. In [6] a method was proposed, based on a test of non

homogeneity to determine the cells containing the non homogeneity.

An other way to proceed is to use robust estimation of the covari-

ance matrix. In this paper we consider a robust method based on a

non parametric technique using the sample spatial sign covariance

matrix (SSCM) [4].

The Robust estimation of the covariance matrix

Robust estimation of covariance is required in many applications

such as directions of arrival (DOA), radar, sonar etc.. When the data

are Gaussian, the sample covariance estimate is the best estimate

in the maximum likelihood sense. Unfortunately, this is extremely

sensitive to deviations from the model assumption. These devia-

tions may be caused by the existence of non homogeneities in the

data. In such situations, robust estimation techniques should be con-

sidered. There are many methods for robust covariance estimation

based on M estimators, S estimators, minimum volume ellipsoid es-

timator, minimum covariance determinant, estimates based on pro-

jection, etc.. In this paper, we will borrow a method from DOA

estimation, proposed by Visuri et al. in [4]. This method is non

parametric and based on the spatial sign covariance matrix estimate.

We begin by the multivariate spatial sign concept. The spatial

sign function for an n variate complex vector x is defined as:

S(x) =

{ x
||x|| , x �= 0

0, x = 0
(8)

Where ||x|| = (xHx)1/2.
For an n variate complex data set, x1, ..,xN , the sample SCM (SSCM)

is

RS =
1

N

N∑
i=1

S(xi)S
H(xi) (9)

We now present the procedure used. Consider an n variate com-

plex valued random variable x with the covariance matrix Σ0 and

theoretical spatial sign covariance matrix (SCM) Σ1. De£ne
∼
x =( �(x)

�(x)

)
and let the 2n × 2n covariance matrix

∼
Σ0 and SCM

∼
Σ1 be:

∼
Σi =

⎛
⎝

∼
Σ

11

i

∼
Σ

12

i
∼
Σ

21

i

∼
Σ

22

i

⎞
⎠ , i = 0, 1. (10)

From Lemma 1 in [4], we get

Σi =
∼
Σ

11

i − j
∼
Σ

12

i + j
∼
Σ

21

i +
∼
Σ

22

i , i = 0, 1 (11)

It is shown that the SSCM is a good estimate of the theoretical SCM.

In this work we use the SSCM in the detection statistic (4) and

(5) instead of the unknown disturbance covariance matrix M and

evaluate the performance of the obtained detector. Since for any

CFAR detector, the most important parameter is the false alarm rate

which must be constant, we will investigate the behavior of the PFA.
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5. NUMERICAL PERFORMANCE ANALYSIS

To evaluate numerically the performance of the modified algorithm,

we assume a PSD of a target signal given by (see [3] for details)

S(f) =
σ2

S
B

(1 − |f−fd|
B

)rect( f−fd
2B

) where f ∈ [−0.5 0.5] is

the frequency normalized to the pulse repetition frequency (PRF),

fd is the normalized mean target doppler frequency, B the normal-

ized bandwidth and rect(.) is the standard rectangular function. This

PSD represent an approximation of the spectrum of the signal backscat-

tered by a hovering helicopter. The elements of the matrix Ms are

obtained by inverse Fourier transform

[Ms]i,k =
1

2B1

∫ fd+B

fd−B

ej2π(i−k)df

= sinc[2B(i − k)]e−j2πfd(i−k), i, k = 1, . . . , N (12)

As in [3], we consider [M]m,l = ρ|m−l|, with ρ = 0.9 is the

one lag correlation coefficient of the disturbance.

It is common to assume the rank r of the signal subspace equal to

the minimum number of dominant eigenvalues whose sum exceeds

r = 0.99Tr(Ms), where Tr(.) is the trace operator. The corre-

sponding eigenvectors represent a basis for the signal subspace.

The first step is to determine the detection threshold by solv-

ing (7) with PFA = α0. The secondary data are obtained from L
range bins surrounding the cell under test. We consider the case of

homogenous and the case of non homogenous secondary data.

Homogenous case: we fix α0 = 10−2, L = 64, N = 8,
fd = 0, B = 0.2 and by means of Monte Carlo simulations, we

determine the PFA for the detector using the sample covariance

matrix estimate and the one using the SSCM. The first one gives

PFA = 1.43.10−2 and the second PFA = 1.90.10−2. One notes

that the sample covariance matrix gives the better performance since

it is the ML estimate.

Non homogenous case: We consider that a number nc of cells

in the secondary data, contain noise plus clutter. We note by CNR

the clutter to noise ratio. Figure 1 shows the false alarm probability

for different CNR when the sample covariance matrix and SSCM are

used. The results show that for high CNR and values of nc approxi-

mately ≤ 25, the SSCM maintains the false alarm at a constant value

less than that obtained with the sample covariance matrix (ML in the

figure), but with an increase in the value of the PFA with respect to

the nominal value α0 = 10−2. When the number nc is large, this

detector losses its CFAR property.

Figure 2 shows the results when ni cells contain noise plus inter-

fering targets. The interfering targets are supposed to follow a com-

plex Gaussian pdf with the INR referring to interference-to-noise

ratio. The SSCM (dashed lines) maintains the false alarm rate (�
2.10−2) independently of the INR value. For low values of INR the

ML gives better performance, but for high values of INR, a drastic

degradation of its PFA is observed.

Figure 3 compares the detection probabilities of the detectors

using SSCM, sample covariance matrix and the one with perfectly

known covariance matrix, in homogenous situations. For high SNR

(greater than 10dB), the plots are the same. For lower SNR, the

detection loss is negligible.

As seen before, the detector using the SSCM is robust to both

interfering targets and clutter edge, since it maintains the false alarm

constant. We now investigate its probability of detection in non ho-

mogenous situation. Figure 4 shows the probability of detection

when nc cells in the secondary data contain a clutter edge, and Fig-

ure 5 shows the case of ni cells containing interfering targets. In

both cases the curves are practically the same.
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Fig. 1. Probability of false alarm using the ML and SSCM in the

presence of clutter edge.

6. CONCLUSION

In this paper we have analyzed the CFAR matched subspace detector

when the disturbance covariance matrix is unknown and adaptively

estimated from secondary data. The practical case of non homoge-

nous secondary data is assumed and a robust method of estimating

the covariance matrix based on the sample spatial sign covariance

matrix (SSCM) is used. The simulations show that this method can,

under certain conditions, maintain the CFAR property of the detector

in non homogenous background with a value of PFA less than the

one obtained using the sample covariance matrix.

7. ACKNOWLEDGEMENT

The authors thank Professor Gini for providing some references.

8. REFERENCES

[1] Kay, S.M. Fundamentals of Statistical Signal Processing,vol.II,
Estimation theory. Engelwood Cliffs, NJ:Prentice hall,1998

[2] Gini, F and A. Farina. ”Matched subspace CFAR detection of

hovering helicopters” IEEE transactions on aerospace and elec-
tronic systems. Vol.35, No 4, pp.1293-1305, october 1999.

[3] Gini, F.,Greco, M. and Farina, A. ”Radar detection and preclas-

si£cation based on multiple hypothesis testing”. IEEE trans-
actions on aerospace and electronic systems. vol.40, no.3, pp.
1046-1059, july 2004.

[4] Visuri, S., Oja, H. and Koivunen,V. ”Subspace-based direction

of arrival estimation using nonparametric statistics” IEEE Trans.
Sig. Proc., Vol 49,no.9,pp.2060-73, Sept.2001

[5] Scharf, L.L. Statistical Signal Processing: Detection Estimation
and Time Series Analysis, Reading MA: Addison-Wesley, 1991.

[6] Rangswamy, M., Michels,J.H. and Himed, B. ”Statistical anal-

ysis of the non homogeneity detector for STAP applications”,

Digital Signal Processing, Vol. 14, 2004, pp.253-267.

III ­ 267



0 5 10 15 20 25 30 35 40 45 50
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ni

Fa
lse

 a
la

rm
 p

ro
ba

bi
liy

u
CNR=0dB

CNR=5dB

CNR=10 dB

CNR=20dB*

Fig. 2. false alarm Probability using SSCM and ML estimate in the

presence of interfering targets.
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Fig. 3. detection Probability of detectors with SSCM and ML esti-

mate and known covariance matrix in homogenous situation.
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cells in the secondary data contain clutter. CNR=10dB.
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