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ABSTRACT

This paper addresses adaptive radar detection of distributed targets
embedded in noise plus interference assumed to belong to an ei-
ther known or unknown subspace of the observables. We assume
that a set of noise-only data is available (the so-called secondary
data). Detection algorithms have been derived modeling noise vec-
tors, corresponding to different range cells, as zero-mean, complex
normal ones, sharing the same structure of the covariance matrix up
to possibly different power levels between primary and secondary
data. The common structure and the power levels are unknown at
the receiver. The performance assessment confirms the effectiveness
of the newly-proposed detection algorithms also in comparison to
previously-proposed ones.

1. INTRODUCTION

Adaptive radar detection of targets embedded in Gaussian distur-
bance has received an increasing attention from the radar commu-
nity in recent years, [1-4, and references therein]. Adaptive detec-
tion of distributed targets has been addressed in [1]; therein useful
target echoes have been modeled as signals known up to multiplica-
tive factors, possibly different from one range cell to another. Adap-
tive subspace detection of point-like targets has been addressed in
[2]. Adaptive subspace detection of distributed targets in noise of
unknown power plus deterministic interference, assumed to belong
to an unknown subspace, has been considered in [3]. Finally, sev-
eral detection algorithms for distributed targets are encompassed as
special cases of the amazingly general framework and derivations in
[4].

In the following we address adaptive detection of distributed tar-
gets, within a given set of range cells (the so-called primary data),
in presence of complex normal noise, with unknown covariance ma-
trix, plus subspace interference. A set of noise-only additional data
(the so-called secondary data) is available. Primary and secondary
data share the same covariance matrix up to possibly different power
levels. Such model will be referred to in the following as partially-
homogeneous environment and it subsumes as a special case the so-
called homogeneous environment, namely the case that primary and
secondary data vectors possess one and the same covariance matrix.
Subspace interference is assumed to belong to an either known or
unknown (but for its rank) subspace of the observables. The perfor-
mance assessment, conducted by Monte Carlo simulation, confirms
the effectiveness of the newly-proposed detection algorithms also in
comparison to existing ones.

The paper is organized as follows. The next section is devoted to
the problem formulation while the object of Section 3 is the design of

detectors based upon the Generalized Likelihood Ratio Test (GLRT).
Section 4 is devoted to the performance assessment and Section 5
contains some concluding remarks.

2. PROBLEM FORMULATION

Assume that an array of Na antennas senses KP range cells and that
each antenna collects Nt samples from each of those cells. Denote
by rk, k ∈ ΩP ≡ {1, . . . , KP }, the N -dimensional vector, with
N = Na × Nt, containing returns from the k-th cell. Moreover,
assume that the disturbance is the sum of colored noise and interfer-
ence, denoted by nk and ik , k ∈ ΩP , respectively, with ik ∈ C

N×1

modeled as a deterministic signal; we want to decide between the
H0 hypothesis that the rk’s contain disturbance only and the H1

hypothesis that they also contain useful target echoes sk ∈ C
N×1,

k ∈ ΩP .
Moreover, we suppose that the useful signal sk and the inter-

ference ik, k ∈ ΩP , are linear combinations of r and q, r, q ∈ N,
q + r � N , linearly independent modes, respectively; otherwise
stated, sk and ik , k ∈ ΩP , are assumed to belong to the range spaces
of the full-column-rank matrices H ∈ C

N×r and J ∈ C
N×q , re-

spectively. Thus, denoting by pk ∈ C
r×1 and qk ∈ C

q×1 the un-
known signal and interference coordinates, we have that sk = Hpk

and ik = Jqk, k ∈ ΩP .
In the following we assume that J is either known or unknown.

In fact, we first assume that J is known and that its range is lin-
early independent of the range of H ; secondly, we assume that J

is unknown (but for its rank) and that, under the H1 hypothesis, the
ranges of H and J are linearly independent. The noise vectors nk’s,
k ∈ ΩP , are modeled as N -dimensional complex normal random
vectors, i.e., nk ∼ CNN(0, M ), k ∈ ΩP , with M being, in turn,
a positive definite matrix; we assume that M is unknown. We also
suppose that KS secondary data, rk = nk ∼ CNN(0, νM ), k ∈
ΩS ≡ {KP + 1, . . . , KP + KS}, where ν > 0 is an unknown
parameter, namely data containing noise only, are available. Finally,
we suppose that the nk’s, k ∈ ΩP ∪ ΩS , are independent random
vectors.

Summarizing, the detection problem to be solved can be formu-
lated in terms of the following binary hypothesis test:8>>>><>>>>:

H0 :

j
rk = Jqk + nk, k ∈ ΩP ,
rk = nk, k ∈ ΩS ,

H1 :

j
rk = Hpk + Jqk + nk, k ∈ ΩP ,
rk = nk, k ∈ ΩS ,

(1)
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where we suppose that KS � N and, as already stated, that r + q �

N .

3. GLRT-BASED DETECTORS

3.1. GLRT for known J

Denote by R = [RP RS] ∈ C
N×K the overall data matrix, with

RP = [r1 · · · rKP
] ∈ C

N×KP the primary data matrix, RS =
[rKP +1 · · · rKP +KS

] ∈ C
N×KS the secondary data matrix, and

K = KP + KS . Moreover, let Q = [q1 · · · qKP
] ∈ C

q×KP and
P = [p1 · · ·pKP

] ∈ C
r×KP .

The above hypothesis testing problem can be solved using the
GLRT

Λ[R] =

max
ν,P ,Q,M

f1 (R; M , Q, P , ν)

max
ν, Q, M

f0 (R; M , Q, ν)

H1
>
<
H0

T, (2)

where fj(R; ·) is the probability density function (pdf) of R under
the Hj hypothesis, j = 0, 1, and T the threshold value to be set in
order to ensure the desired probability of false alarm (Pfa).

Let us firstly solve the optimization problem under the H0 hy-
pothesis; to this end, observe that

f0(R; M , Q, ν) =

»
1

πN det(M )

–K »
1

ν

–NKS

×

exp

j
−tr

»
M

−1

„
1

ν
S + (RP − JQ)(RP − JQ)†

«–ff
,

where det(·) and tr(·) are the determinant and the trace of a square
matrix, respectively, † denotes conjugate transpose, and S = RSR

†
S .

Maximizing over M and Q, we get the following compressed like-
lihood function under H0 [4]

f0(R; cM , bQ, ν) =

»
K

eπ

–NK »
1

ν

–KP (K−N)
1

detK [S]
×

1

detK
h

1
ν
IKP

+
`
S−1/2RP

´†`
IN − PJw

´`
S−1/2RP

´i
where IN − PJw denotes the projection matrix onto the orthogonal
complement of the range of Jw = S−1/2J ∈ C

N×q. Similarly, the
compressed likelihood under H1 is given by

f1(R; cM , bQ, bP , ν) =

»
K

eπ

–NK »
1

ν

–KP (K−N)
1

detK [S]
×

1

detK
h

1
ν
IKP

+
`
S−1/2RP

´†`
IN − PWw

´`
S−1/2RP

í ,

where IN − PWw denotes the projection matrix onto the orthog-
onal complement of the range of Ww = S−1/2W ∈ C

N×(q+r)

with W = [H J ] ∈ C
N×(q+r). In particular, if q + r = N the

compressed likelihood under the H1 hypothesis is given by

f1(R; cM , bQ, bP , ν) =

»
K

eπ

–NK

νNKP
1

detK [S]
. (3)

As a special case, plugging the compressed likelihoods for ν = 1
into (2) yields the GLRT for homogeneous environment. However,
in order to come up with the GLRT for partially-homogeneous en-
vironment, we need to maximize the compressed likelihoods with

respect to ν > 0. Note that, (3) diverges as ν tends to infinity and,
hence, for q + r = N the GLRT does not exist. Thus, we focus on
the case q + r < N . To this end, denote by t0 and t1 the ranks of
the matrices

A0 =
`
S

−1/2
RP

´†`
IN − PJw

´`
S

−1/2
RP

´
and

A1 =
`
S

−1/2
RP

´†`
IN − PWw

´`
S

−1/2
RP

´
,

respectively. It can be shown that, if KS

KP
> r+q

N−r−q
, the GLRT for

partially-homogeneous environment can be re-cast as

Λ[R] =
bν KP (K−N)

K
0 det

h
1bν0

IKP
+ A0

i
bν KP (K−N)

K
1 det

h
1bν1

IKP
+ A1

i H1
>
<
H0

T, (4)

where bνj , j = 0, 1, is the unique positive solution of equation

tjX
k=1

λk,jν

λk,jν + 1
=

KP N

K
, j = 0, 1, (5)

with λk,0, k = 1, . . . , t0, and λk,1, k = 1, . . . , t1, the nonzero
eigenvalues of A0 and A1, respectively. The proof follows the lead
of results in [1].

3.2. GLRT for unknown J

It is also possible to come up with the GLRT for unknown J (up to
its rank) and the assumption that, under the H1 hypothesis, the rank
of W = [HJ ] is equal to r + q. We focus on r + q < N . For the
case at hand, the GLRT is given by

Λ[R] =

max
ν,J ,P ,Q,M

f1 (R; M , Q, P , J , ν)

max
ν,J ,Q,M

f0(R; M , Q, J , ν)

=

min
ν,J

ν
KP (K−N)

K det

»
1

ν
IKP

+ A0

–
min
ν,J

ν
KP (K−N)

K det

»
1

ν
IKP

+ A1

– H1
>
<
H0

T.

Denote by m0 = min{KP , N} and m1 = min{KP , N − r},
the ranks of the matrices S−1/2RP and Z†S−1/2RP , respectively,
where Z is such that IN − PHw = ZZ† with PHw the projec-
tion matrix on Hw = S−1/2H ∈ C

N×r . Then, it can be shown
that the numerator and the denominator of previous equation, after
minimization over J , are given by8>>>>>><>>>>>>:

min
ν

νm0−q−
KP N

K

N−qY
i=N−m0+1

„
1

ν
+ σ2

i

«
, if m0 � q + 1,

min
ν

„
1

ν

«KP N

K

, if m0 < q + 1,

(6)
and8>>>>>><>>>>>>:

min
ν

νm1−q−
KP N

K

N−r−qY
i=N−r−m1+1

„
1

ν
+ η2

i

«
, if m1 � q + 1,

min
ν

„
1

ν

«KP N

K

, if m1 < q + 1,

(7)
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respectively, where the σi’s, i = 1, . . . , m0, and the ηi’s, i =
1, . . . , m1, are the singular values of the matrices S−1/2RP and
Z†S−1/2RP , respectively, arranged in increasing order. At this
point, it is a simple matter to come up with the GLRT for unknown
J and homogeneous environment (ν = 1). We focus, instead, on
the GLRT for partially-homogeneous environment. To this end, first
note that the likelihood function under Hj diverges if mj < q + 1,
j = 0, 1. Thus, we assume m0 � q + 1 and m1 � q + 1. The op-
timization problems (6) and (7) are similar to that considered for
known J . For instance, for KP � N the GLRT exists only if
KS

KP
> r+q

N−r−q
and is given by

Λ[R] =

bν“
N−q−

KP N

K

”
0

N−qY
i=1

„
1bν0

+ σ2
i

«

bν“
N−r−q−

KP N

K

”
1

N−r−qY
i=1

„
1bν1

+ η2
i

« H1
>
<
H0

T. (8)

As to bν0, it is the unique positive solution of equation

N−qX
i=N−m0+1

σ2
i ν

σ2
i ν + 1

=
KP N

K
, (9)

while bν1 is the unique positive solution of equation

N−r−qX
i=N−r−m1+1

η2
i ν

η2
i ν + 1

=
KP N

K
. (10)

Similarly, it is possible to come up with specific expressions of the
GLRT for N − r � KP < N and q + 1 � KP < N − r omitted
here for the lack of space.

As a final remark, note that equations (5), (9), and (10) can be
solved by resorting to the Matlab function roots which evaluates
the eigenvalues of a companion matrix of order (tj + 1) × (tj + 1)
at most, j = 0, 1.

4. PERFORMANCE ASSESSMENT

In this section we carry out a performance assessment of the pro-
posed algorithms by resorting to standard Monte Carlo simulation.
In order to evaluate the thresholds necessary to ensure a preassigned
value of Pfa and the Probabilities of Detection (Pd’s) we resort to
100/Pfa and 104 independent trials, respectively. The performance
analysis assumes r = 1, q = 3, Pfa = 10−4, and steering vec-
tor H ≡ s = (1/

√
N)[1 · · · 1]T . The pk’s are (complex numbers)

with the same deterministic amplitude and independent and identi-
cally distributed (iid) phases uniform in (0, 2π). As to the inter-
ference matrix J , it is randomly generated1 at each iteration of the
Monte Carlo simulation. In addition, the interference coefficients
qk, k = 1, . . . , KP , are iid complex normal random vectors (rv’s)
with zero mean and covariance matrix given by σ2

JIq. The noise
vectors nk, k = 1, . . . , K, are iid complex normal rv’s with zero
mean and exponentially-shaped autocorrelation with one-lag corre-
lation coefficient ρ = 0.95 and mean square value σ2

n. The signal-to-
noise power ratio (SNR) is defined as SNR = s†M−1s

PKP

k=1 |pk|2
where | · | denotes the modulus of a complex number. Finally, the
interference-to-noise power ratio (INR), defined as σ2

J/σ2
n, is set to

1More precisely, the entries of J are iid random variables taking on values
±1/

√
N with equal probability.

INR = 10 dB. We analyze the performance of the GLRT-based de-
tectors (4) and (8) also in comparison to ad hoc detectors relying
on the two-step GLRT-based design procedure and to the one-step
GLRT derived without taking into account the presence of the in-
terference at the design stage [1]. For the sake of clarity, we recall
here that the decision statistics of the ad hoc detectors for known and
unknown J are given by [3]

tr {(IN − PJw )Σ (IN − PJw )}
tr {(IN − PWw )Σ (IN − PWw )}

and  
m0X

i=q+1

γi

!
/

 
m0X

i=q+1

δi

!
,

respectively. As to Σ, it is given by Σ = S−1/2RP R
†
P S−1/2,

m0 = min{KP , N} is the rank of Σ, while the γi’s and the δi’s, i =
1, . . . , N , are the eigenvalues of Σ and (IN −PHw )Σ(IN −PHw ),
respectively, arranged in decreasing order.

Figure 1 refers to N = 8, KS = 16, and KP = 8 whereas Fig-
ure 2 assumes N = 8, KS = 32, and KP = 8. Figure 1 shows that
the GLRT for known J , given by (4), performs better than the cor-
responding ad hoc detector, but also that the GLRT for unknown J ,
given by (8), experiences a small, although not negligible, loss with
respect to the corresponding ad hoc detector. Moreover, compari-
son of Figures 1 and 2 shows that performances of corresponding
one-step and two-step GLRT-based detectors are closer as KS in-
creases. Finally, all of the above detectors significantly outperform
the GLRT designed without assuming the presence of subspace in-
terference [1].

Figure 3, referring to N = 16, KS = 32, and KP = 8, high-
lights instead, as already pointed out in [3], that the two-step detector
for unknown J is useless when KP < N and also that the one-step
GLRT for known J outperforms the corresponding two-step GLRT
for the considered design parameters. Figure 4, referring to N = 16,
KS = 32, and KP = 16, confirms the superiority of plain GLRT’s
with respect to the ad hoc detectors for certain design parameters
and that all of them outperform those designed without taking into
account interference [1].

5. CONCLUSIONS

We have addressed adaptive radar detection of distributed targets in
noise plus subspace interference. To this end, we resorted to the
GLRT design procedure and assumed that a set of noise-only data is
available. Noise returns from different range cells have been mod-
eled as zero mean, complex normal, independent random vectors
sharing the same covariance matrix up to possibly different power
levels between primary and secondary data (partially-homogeneous
environment). The covariance structure of noise returns is unknown
at the receiver and so are the possibly different scaling factors. In-
terference is modeled in terms of deterministic signals which belong
to an either known or unknown subspace of the observables. The
performance assessment has shown that the newly-introduced (one-
step) GLRT’s can guarantee better performance than detectors rely-
ing on the two-step GLRT-based design procedure [3]. Moreover,
the proposed GLRT’s outperform those designed without taking into
account interference [1].
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Fig. 1. Pd vs SNR: N = 8, KS = 16, and KP = 8.
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Fig. 2. Pd vs SNR: N = 8, KS = 32, and KP = 8.
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Fig. 3. Pd vs SNR: N = 16, KS = 32, and KP = 8.
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Fig. 4. Pd vs SNR: N = 16, KS = 32, and KP = 16.
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