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ABSTRACT

A direct method of designing linear phase (LP) near perfect 

reconstruction (NPR) nonuniform filter banks (NUFBs) 

with rational sampling factors is presented. Conditions on 

the possible sampling factors of NUFBs are given. The band 

position relations and phase relations of the significant 

aliasing components are also analyzed. Based on these two 

relations, we derive a necessary condition on the elimination 

of significant aliasing distortion (ALD). Meanwhile LP 

property is met. Moreover, a set of relations of the filters are 

presented to minimize the ALD further. In our proposed 

method, the LP NUFBs with high stopband attenuation and 

low system delay can be easily designed without nonlinear 

optimization procedure.  

1. INTRODUCTION

Nonuniform filter banks (NUFBs) have been successfully 

employed in many signal processing applications due to 

their flexibility in partitioning subbands. In some 

applications, such as image coding, the linear phase (LP) 

property of individual filter in the filter bank is highly 

desired. Unfortunately, the NUFBs designed by the most 

existing methods [1]-[5] do not posses LP property. The 

tree-structure method proposed in [6] is an easy way to 

design LP NUFBs via cascading uniform filter banks. 

However, the limitation of decimation factors and the long 

system delay are two major drawbacks using  this method. 

In our previous work [7], we proposed a method, which is 

based on indirect structure, to design LP NUFBs, but this 

structure still have a long system delay. 

In this paper, we propose a simple direct method for 

designing near perfect reconstruction (NPR) LP NUFBs. 

First of all, we discuss the condition on the feasibility of 

NUFBs, and give two conditions on the suitable position of 

each individual filter. Providing the above conditions 

fulfilled, we further analyze the band positions and phase 

relations of the significant aliasing distortion (ALD). Based 

on two sets of above relations, we derive a theorem on the 

elimination of significant ALD. With these conditions, the 
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filter bank design problem is simplified as how to design 

each individual filter, leading to a low complexity of design. 

This can be done by using one of the available filter design 

tools. In this paper, we employ the Parks-McClellan 

algorithm. The desired magnitude response of the filter is 

specified as an optimization objective. 

The outline of the paper is as follow. In Section 2, the 

basic theory of LP NUFBs is introduced. Section 3 will 

deduce a theorem for the cancellation of significant ALD. 

Then, some examples are given in Section 4. Finally, we 

summarize our results in the conclusion.  

2. THEORY OF NUFBS WITH RATIONAL

SAMPLING FACTORS

The NUFBs with rational sampling factors is depicted in Fig. 

1. We assume that the sampling factors i
p  and i

q  are 

coprime and the NUFB is critically sampled, that is  
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Fig. 1 M-channel nonuniform filter banks. 

2.1.  Basic Principle of LP NUFBs 

Let )(zH
k  and )(zF

k  be the analysis and synthesis filters. 

Considering the affect of gain kk
qp  in Fig. 1, the input 

signal )(zX and output signal )(ˆ zX  are related by 

11

,

0 1

1 11 11

00 0

( ) ( ) ,

ˆ ( ) ( ) ( ) ( )

       ( ) ( )
k

k k

k k

k

qM
l p

q k l

k l

k k

k k k k k k k

k k k k

k k

p qM
l p p i l p i
q p q pk k

ik l

X zW A z

X z X zW H z W W F z W

X z T z

(2)

where ij

i eW /2 ,

1 111

0 0

( ) ( ) ( )
k

k k k k

k k

k

pM
p i p i

k p k p

k i

T z H z W F z W (3)

III ­ 2531­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006



is the transfer function of the filter bank, and
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,
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is the aliasing components. 

    The time-reverse property of the analysis filter ( )kh n and 

synthesis filter ( )kf n  is possessed, that is: 

)()( nNhnf
kkk

or               )()( 1zHzzF k

N

k
k , 0 1.k M

(5a)

(5b)

where kN is the order of analysis filter )(nhk .

For the LP filter banks, both the analysis and synthesis 

filters posses the LP property, that is: 

for symmetric ( )kh n ,      ( ) ( )k k kh n h N n ; (6a) 

for anti-symmetric ( )kh n , ( ) ( )k k kh n h N n . (6b) 

Combining (5a), (6a) and (6b), we have: 

( ) ( 1) ( )ku

k kf n h n , (7) 

where
0,  when ( ) is symmetric

1,   when ( ) is anti-symmetric

k

k

k

h n
u

h n
 , which means 

that  the synthesis filters are also LP filters.  

Substituting (5b) into (3), we get 
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To eliminate the PHD, Eq. (9) should be fulfilled. 
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where C is a positive integer. Then  
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which has LP property, and the PHD is eliminated. 

To make the AMD (amplitude distortion) be eliminated, 

we should make the plot of |)(| jeT   to be ‘flat’ as soon as 

possible. For analysis conveniently, we rewrite (8) as: 
1
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Cjj peHpeeT , where kp  denotes the 

decimation with rate kp . Clearly, the AMD can be canceled 

by using the following constraint: 
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From (11), we can find out that the main factor influencing 

the AMD is the transition band of each individual filter. 

Based on this observation, we propose to adjust the 

transition band shape so as to minimize the AMD. This can 

be easily and efficiently done by using the Parks-McClellan 

algorithm.

2.2.  Feasibility of Rational Sampling Rate 

First, we introduce two concepts: image region of input 

signal and un-image region of input signal ( ).X

For the k-th channel ( 10 Mk ) of NUFBs, the regions 
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Fig. 2 The analysis filters in image and un-image regions. 

    Then we derive the relation about feasible sampling rates 

without giving the detailed derivation procedures. 

 For the un-image case (the passband position of ( )kH z ,

0 1k M  is in the un-image region) , we have 
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For the image case (the passband position of ( )kH z ,

0 2k M  is in the image region), we have 
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where kB  is a positive integer. 

    We say that a sampling rate is feasible, if (12) is satisfied 

for some kd  or (13) is satisfied for some kr  for each k,

1 1k M .

3. CANCELLATION OF SIGNIFICANT ALD

As for the significant ALD, we mean the ALD caused by 

the adjacent filters. First, we give a necessary condition.  

Theorem 1: Under the preconditions Eq. (5a) and (9), the 

necessary condition on the cancellation of the significant 

ALD of LP NUFBs with rational sampling factors is 

depicted as follows: 

The analysis filters ( )
k

h n should satisfy the alternate 

symmetric property described as: )(
0

nh is symmetric, )(
1

nh is

anti-symmetric, )(
2

nh  is symmetric, ··· . 

    In the following part (Sec. 3.1 and 3.2), we will focus on 

the deduction of the theorem 1. 

3.1. The Band Position Relations of the Significant 

Aliasing Components      

Clearly,
, ( )

kk lA z  shown in (4) can be considered as the 

result of )()( zFzWH k

l

qk
k

k
decimated by kp . That is, 
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k k
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Without lose of generality, we only consider the center 

point of each significant aliasing region.  

Due to page limitation, we only consider the un-image 

case. Fig. 3 shows one example of this case. 

Fig. 3 Significant ALD for the un-image case. (a) Input signal. 

(b) kH  in the un-image regions and the significant ALD. (c) 

The corresponding aliasing after decimation of kp .

       The term )()( zFzWH k

l

qk
k
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 can cause significant ALD at 

the following positions: 
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    The image case also satisfies the similar relation, and this 

relation makes the following fact clearly.  

For the k-th channel, 20 Mk , significant ALD can 

be generated in positions 
k

i

i

i

p
q0

 and 
k

i

i

i

p
q0

 for some 

kl  in
, ( )

kk lA z ; for  k+1-th channel, the significant ALD in 

the same positions can also be generated for some  
1kl . This 

relation implies that the significant ALD could be canceled 

if we select analysis and synthesis filters properly. 

Then we will analyze whether we can cancel the 

significant ALD, and if this is the case, how we cancel it. 

3.2. Phase Relations of Significant ALD and Elimination 

of Significant ALD 

For the sake of easy analysis, we rewrite the term 

, ( )
kk lA z  into another form according to (7) and (14):  

, ,( ) ( 1) ( )k

k k

u

k l k lA z D z , (15) 

where  , ( ) ( ) ( ) k

k k

l

k l k k q k kD z p H zW H z p . (16) 

We divide the significant ALD into two classes: Class 1: 

in the image region and Class 2: in the un-image region. 

The following analysis and results focus on Class 1.

However, the similar analysis and results can be applied to 

Class 2.

Class 1: The significant ALD in the un-image region. 

There are four types LP filters [6]. Due to space 

limitation,  we only discuss Case 1.

Case 1: The analysis filters )(zH k  is symmetric and even 

order in the un-image region in [0, ].

      The term ( ) ( )k

k

l

k q kH zW H z  can cause significant ALD in 

the positions 
k

k
q

C  and  
k

k
q

C )1(  (points a and b in Fig. 

3(b)). Then we define 1( , )kk lPh  as the phase of the term 

( ) ( )k

k

l

k q kH zW H z  in the position 
k

k
q

l  and also define 2( , )kk lPh

as the phase of 
, ( )

kk lD z   in the position 
1

0
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i i
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 or 

0
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i

i i
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 (points 'a  or 'b  in Fig. 3(c)). Then we give the 

inherent phase relation as follow  
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12( , 1) 2( 1, )k kk C k CPh Ph , 0 2k M , (17) 

which means that , 1( )
kk CD z   and

11, ( )
kk CD z  have the same 

phase expression in the same position 
0

k

i

i i

p
q

 in [0, ].  

For the other cases in Class 1and the cases in Class 2, we 

can find the similar results for the proper kl  and 1kl  . 

Based on those results, we conclude that to eliminate 

significant ALD, we should ensure the theorem 1 to be 

satisfied.  

In addition, it is necessary to give a lemma to minimize 

the ALD through analysis. 

Lemma 1: Let ( )l kT   and ( )r kT  denote the width of ( )kH z ’s 

transition band which will partition the lower and higher 

frequency components of input signal respectively. To 

minimize the ALD, we should choose 
( ) ( 1) 1r k k l k kT p T p ,

0 2k M .

4. DESIGN EXAMPLES

Using our proposed method, two examples are shown 

employing Parks-McClellan algorithm. The first one is a 3-

channel NPR LP NUFBs with sampling rate (1/5, 3/5, 1/5), 

and the orders of analysis filters: 0 2 56N N , 168
1

N . Fig. 

4 shows the magnitude response of analysis filters, AMD 

and ALD. The magnitude error is 3
3.966 10

pp
E the 

aliasing error is 31.532 10 ,aE  and the stopband 

attenuation is 80.0dB. 

(a) 

(b) (c) 

Fig. 4 3-channel NUFBs with sampling rate (1/5, 3/5, 1/5). (a) 

Magnitude response of each analysis filter; (b) Amplitude 

distortion. (c) Aliasing error. 

The second example is a 4-channel case with sampling rate 

(1/2, 1/4, 3/16, 1/16), and orders 0 1 3 169N N N ,

2 507N . Fig. 5 shows the magnitude response of analysis 

filters. The resulting 33.966 10ppE , 31.532 10aE , and 

stopband attenuation is 89.2dB. 

Fig. 5 Magnitude response of 4-channel NUFBs with sampling 

rate (1/2, 1/4, 3/16, 1/16). 

5. CONCLUSIONS 

We proposed a new simple method to design NPR LP 

NUFBs with rational sampling factors.  The feasibility of 

desired system was analyzed. After some detailed analysis, 

a necessary condition on the elimination of significant ALD 

is derived. With the requirements fulfilled, the proposed 

FBs can be easily designed. In addition, our method has 

lower system delay compared with the LP NPR NUFBs by 

the indirect method, and can attain a higher stopband 

attenuation of each analysis and synthesis filter. 
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