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ABSTRACT

This paper presents the design of two-dimensional Wiener filters for
error resilient time domain lapped transform. Two solutions are dis-
cussed, and a multi-pass approach is also proposed to make the algo-
rithm adaptive to input statistics. Design examples and image coding
experiments show that the adaptive 2-D Wiener filters provide sig-
nificant improvement over the existing 1-D Wiener filtering method.

1. INTRODUCTION

Error concealment is an important technique to mitigate the effect of
transmission error in multimedia communications. Among the error
concealment algorithms that have been proposed [1], some methods
such as the reversible variable length coding [2] introduce error re-
silience at the encoder. Some of them estimate the lost data at the de-
coder by virtue of interpolation or projection onto convex sets [3,4].
Other approaches tackle the problem by a joint design of the encoder
and decoder, for which the lapped transform provides a powerful and
flexible platform [5].

The conventional lapped transform applies a postfilter after the
DCT to remove the remaining redundancy between neighboring blocks
and improve the coding efficiency of the DCT. In [6], it was realized
that the lapped transform can also be designed to introduce redun-
dancy to the transformed coefficients, thereby enhancing the error
resilience of the system. In [7], this approach is used to generate
multiple description coding (MDC), where the transformed image is
split into various subimages, and each subimage is entropy coded
independently to obtain one description. A maximum smoothness
recovery design criterion is used in [8] to improve the error conceal-
ment quality, at the cost of increased complexity.

Recently, a new family of lapped transform named the time-
domain lapped transform (TDLT) [9] is developed by applying a
prefilter at block boundaries before the DCT, making it more com-
patible to existing DCT-based infrastructures. The application of the
TDLT in error concealment shows that more flexibilities and better
performance can be achieved [10]. However, the mean average re-
construction method proposed in [6] is still used in [10], where the
lost coefficient blocks are simply estimated by averaging its neigh-
boring blocks.

In [11], we show that the estimation error of the lost TDLT co-
efficients can be minimized by applying the Wiener filter, which
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yields up to 80% error reduction compared to the mean reconstruc-
tion method in [10]. More than 4 dB improvement can be achieved
in image coding experiments.

Two issues still exists in [11]. First of all, the design of the
Wiener filter is based on one-dimensional (1-D) signal model, and
the result is applied to two-dimensional (2-D) signal via the classic
separate approach, i.e., each row of the lost block is first estimated
from its horizontal neighbors. A vertical estimate is then obtained
for each column, and the average of the two estimates is used as the
final result. This simple treatment does not exploit the 2-D geometric
structures of the input and can create some artifacts, especially near
the edges. In this paper, we generalize the approach in [11] and
derive the 2-D Wiener filter for the estimation of lost transformed
coefficients. Another limitation of [11] is that it uses a fixed Wiener
filter. In this paper, we will show how to introduce adaptivity to this
framework.

The implementation of TDLT for image coding is illustrated in
Fig. 1 (a), which only shows the operations required to obtain the
transformed coefficients of one block of size M × M (in the center
of the figure). The encoder first applies an M × M prefilter at all
block boundaries, first in each row and then in each column, or vice
versa. After that, the 2-D DCT is applied to each block. As a result,
each block of TDLT coefficients is a function of the input samples in
a 2M × 2M region that spans nine neighboring blocks. The inverse
of the two steps are employed at the decoder.

If some coefficient blocks are lost during transmission, the de-
coder can first applies the inverse DCT to all correctly received blocks,
then estimates each of the lost block from its neighboring blocks,
before applying the postfiltering. In the 1-D model considered in
[6, 10, 11], only two neighboring blocks are required in the estima-
tion. In the 2-D case, it can be seen from Fig. 1 that the estima-
tion error in each block propagates to nine blocks (more precisely a
2M × 2M region). Therefore in this paper we limit our attention to
the estimation of the lost block from the eight neighboring blocks.
To reduce the complexity, we consider two special cases that involve
different amount of neighboring information.

2. 2-D ESTIMATION FROM 4-CONNECTION NEIGHBORS

In this section, we consider the estimation of a lost block from its
four immediate neighboring blocks, as shown in Fig. 1 (b). The es-
timation is performed after applying the inverse DCT to all received
blocks. Suppose S0 is the inverse DCT result of a lost TDLT coeffi-
cient block of size M × M , and Si, i = 1, ..., 4 the inverse DCT of
the top, bottom, left, and right neighbor of S0, respectively, as shown
in Fig. 1 (b). If we use �Si, i = 0, . . . , 4 to represent the M2 × 1
vector obtained by stacking the M columns of block Si together, all
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Fig. 1. (a) 2-D implementation of TDLT. All gray areas are affected
by the pre/post-filtering, and the DCT/IDCT is applied to the dark
gray area. (b) Estimation of the lost block from four neighbors.

coefficients of the 4-connection neighbors can be put into a 4M2×1
vector as

�S4C �
�
�ST

1 , �ST
2 , �ST

3 , �ST
4

�T

. (1)

Our first objective is to find an M2 × 4M2 linear filter H1 such

that �̂S0 = H1
�S4C is the optimal linear estimate of �S0 in terms of

MSE. By the orthogonality principle, the optimal prediction error is
uncorrelated with the observation, i.e.,

E{
�
H1

�S4C − �S0

��
H1

�S4C − �S0

�T

} = 0. (2)

The optimal solution is the 2-D Wiener filter

H1 = R�S0�S4C
R−1

�S4C
�S4C

. (3)

The correlation matrices involved above can be obtained as the
follows. As shown in Fig. 1 (a), each input block Si to the DCT is
a function of 2M × 2M input samples Xi. Let P be the M × M
prefilter, and P0, P1 its first M/2 rows and the second M/2 rows,
respectively, the relationship between Xi and Si is thus

Si = P12XiP
T
12, (4)

where P12 is an M × 2M matrix given by

P12 � diag{P1,P0}. (5)

Denote ⊗ the Kronecker product, (4) can be turned into the 1-D
expression

�Si = (P12 ⊗ P12) �Xi � P̃12
�Xi, (6)

where �Xi is obtained from Xi by stacking its columns. By the defi-
nition of �S4C in (1), we have

�S4C = diag{P̃12, P̃12, P̃12, P̃12}
�
�XT

1 , �XT
2 , �XT

3 , �XT
4

�T

� P̃12, 4
�X4C .

(7)

From (6) and (7), we get

R�S0�S4C
= P̃12R�X0 �X4C

P̃T
12, 4,

R�S4C
�S4C

= P̃12, 4R�X4C
�X4C

P̃T
12, 4.

(8)

These matrices can be obtained once the 2-D correlation matrix of
the input is known. Further discussions on the input statistics are
given in Sec. 5.

3. FINAL MSE AND JOINT OPTIMIZATION

Our ultimate goal is to reduce the reconstruction error after the post-
filtering, rather than after the Wiener filtering of the lost blocks.
When quantization noise is ignored, the final reconstruction error
in error concealment is solely caused by the estimation error v0 =

S0 − Ŝ0. After post-filtering, the M × M estimation error propa-
gates to a 2M × 2M region. The reconstruction error in this region
is given by

e =

�
T1 0
0 T0

�
v0

�
T1 0
0 T0

�T

� T21 v0 TT
21, (9)

where T0 and T1 are the left half and the right half of the post-filter
T, respectively, i.e., T = [T0,T1].

The equation above can be turned into 1-D by the Kronecker
product as

�e = (T21 ⊗ T21)�v0 � T̃21�v0. (10)

Thus
R�e�e = T̃21R�v0�v0T̃

T
21. (11)

Each diagonal entry of R�e�e corresponds to the MSE of one pixel in
the 2M × 2M region. We can then extract all diagonal entries from
R�e�e and regroup them into a 2M×2M matrix, which represents the
distribution of the final reconstruction error in the 2M ×2M region.
We define the overall MSE of the 2M × 2M region as

E = 1/(4M2) trace{R�e�e}. (12)

An optimization program can be set up to obtain the TDLT pre-
and post-filters so that the system achieves different tradeoffs be-
tween the error resilience and the compression capability. The ob-
jective function of the optimization is defined to be:

J = GTC − α E , (13)

where GTC is the coding gain of the TDLT when there is no trans-
mission error. Maximizing the objective function with different value
of α will lead to different solutions. Other criteria can also be in-
cluded in the objective function. For example, we can explicitly
control the distribution of the error in the 2M × 2M region in order
to obtain smooth transition from healthy blocks to concealed blocks.

4. 2-D ESTIMATION FROM 8-CONNECTION NEIGHBORS

The 2-D Wiener filter in Sec. 2 is based on coefficients in the four
immediate neighboring blocks. In this section, we consider 2-D
Wiener filter that involves information in all eight neighboring blocks.
To reduce the complexity, we investigate the Wiener filter based on
M/2 layers of coefficients around the lost block, as shown by the
light gray area in Fig. 1 (a). The number of neighboring coefficients
in this region is 3M2, which is less than the 4M2 used in the last
section.

Denote �S8C the vector obtained by stacking all of these 3M2

neighboring coefficients, it is straightforward to show that the 2-D
Wiener filter for the estimation of the lost vector �S0 is

H2 = R�S0�S8C
R−1

�S8C
�S8C

. (14)

To find the expression of R�S0�S8C
and R�S8C

�S8C
, we first write

the 2M × 2M prefiltered region as

S2M = diag{P, P}X2M diag{P, P}T � P2MX2MPT
2M . (15)
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Fig. 2. 2-D error distributions of various error resilient TDLTs with similar coding gains; (a) by 1-D Wiener filter (MSE: 0.0587); (b) by
4-connection 2-D Wiener filter (MSE: 0.0209); (c) by 8-connection 2-D Wiener filter (MSE: 0.0218).

With the help of the Kronecker product, this can be converted into

�S2M = P̃2M
�X2M . (16)

Therefore
R�S2M

�S2M
= P̃2MR�X2M

�X2M
P̃T

2M , (17)

which can be obtained once the prefilter and the input statistics are
known. R�S0�S8C

and R�S8C
�S8C

in (14) are simply submatrices of
R�S2M

�S2M
.

5. 2-D STATISTICAL MODELS AND ADAPTIVE
FILTERING

Both (8) and (17) requires the knowledge of the 2-D auto-correlation
matrix of the input. We have tested with two commonly used mod-
els for natural images. The first one is the separable AR(1) model,
where

rxx(h, k) = E{x(m,n) x(m + h, n + k)} = σ2
xρ|h|

r ρ|k|
c , (18)

where ρr and ρc are row and column correlation coefficients, respec-
tively.

Another model is the isotropic model, where

rxx(h, k) = σ2
xρ

√
h2+k2

. (19)

This is in general a more accurate representation of natural images
that the separable model, and we will use this model in the following
designs and experiments. The value of ρ is chosen to be 0.95.

The Wiener filter based on the model in (19) works well for
smooth images. However, its performance may not be satisfactory
for images with more high frequency components. In these cases,
a simple multi-pass method can be applied. We first use the op-
timized 2-D Wiener filter and the inverse TDLT to obtain the first
reconstructed image. This image is then used to estimate the auto-
correlation matrix, which allows us to compute an improved Wiener
filter according to (3) or (14). This filter is thus applied to the input
data to get a second-pass reconstruction image. The procedure can
be repeated to get multi-pass results. Our experiments show that the
best results is usually obtained in three passes.

6. DESIGN AND ERROR CONCEALMENT EXAMPLES

Fig. 2 (a) shows the error distribution given by the 1-D Wiener filter
in [11] when the prefilter is optimized for both coding efficiency and
error resilience. The coding gain is reduced from 9.61 dB to 8.41

dB, but the MSE is reduced by almost 70% (from 0.18 to 0.06). Fig.
2 (b) shows the result of the 4-connection 2-D Wiener filter at similar
compression efficiency, which further reduces the MSE to 0.02. Fig.
2 (c) is the error distribution of the 8-connection 2-D Wiener filter
(14). Its MSE is also 0.02.

In Fig. 3, we compare the error concealment performances of
the mean reconstruction method in [10], the 1-D Wiener filter in [11],
and the 4-connection 2-D Wiener filter proposed in this paper. The
forward transforms have similar coding gains in these cases. A 25%
regular loss scenario is considered. Such loss pattern can happen
in block splitting-based multiple description coding [7]. The PSNR
given by the 1-D Wiener filter is 3.8 dB higher than the mean recon-
struction method. However, due to the separate estimations in hori-
zontal and vertical directions and the final average operation, some
artifacts can be noticed, especially near the edges. In contrast, the
2-D method yields another 1.9 dB improvement, and the visual arti-
facts are also reduced significantly. The measured error distribution
around each lost block is given in Fig. 3 (e), whose shape agrees
very well with the theoretical distribution in Fig. 2 (b).

Fig. 4 demonstrates the performance of the multi-pass filter-
ing approach for image Barbara, as discussed in Sec. 5. The 8-
connection filter is used. This image is dominated by textures; there-
fore (19) is no longer suitable. This explains the artifacts in the
first-pass result in Fig. 4 (c). It is also slightly worse than the 1-D
Wiener filter result in Fig. 4 (b). However, after estimating the auto-
correlation matrix from the reconstructed image, re-computing the
Wiener filter, and repeating the filtering, the next two passes achieve
5.7 dB and 6.2 dB improvements, respectively. In fact, we can only
get 0.05 dB higher even with the correlation matrix estimated from
the original uncorrupted image. This shows that the multi-pass ap-
proach is very effective in boosting the performance of error con-
cealment in the lapped transform framework.

7. CONCLUSIONS

Two-dimensional Wiener filter for the error resilient lapped trans-
form is developed. Together with multi-pass adaptive filtering, the
2-D solution can yield more than 5.5 dB improvement over the 1-D
Wiener filter in certain cases. The derivation in this paper can be
modified to obtain 2-D Wiener filters with less than four available
neighboring blocks. These filters are needed at the boundary of im-
ages. They are also necessary inside the image when more than two
descriptions are used in MDC or in random block loss scenarios.

In the 1-D case [11], the size of the filter is M × 2M , and the
filter is applied to each row and each column. Ignoring the pos-
sible fast implementation, this requires roughly M × 2M × 2M
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Fig. 3. Portions of error concealment results of different methods; (a) Loss pattern; (b) by filter P2 in [10] with mean reconstruction method:
29.86 dB; (c) by the 1-D Wiener filter P21 in [11]: 33.61 dB; (d) by the 4-connection 2-D Wiener filter: 35.50 dB; (e) Measured error
distribution of (d).
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Fig. 4. Portions of error concealment results of different methods; (a) Loss pattern; (b) by the 1-D Wiener filter P21 in [11]: 28.73 dB; (c)
The first pass result with the 8-connection 2-D filter: 28.05 dB; (d) The second pass result with the 8-connection 2-D filter: 33.72 dB; (e) The
third pass result with the 8-connection 2-D filter: 34.25 dB.

multiplication-addition operations, or 4M operations for each coef-
ficient in the lost block. The size of the 2-D Wiener filters in (3)
and (14) are M2 × 4M2 and M2 × 3M2, respectively, thus their
complexities are approximately 4M2 and 3M2 operations for each
coefficient, which are acceptable for small block size.

When the multi-pass approach is used, the estimation of the
auto-correlation matrix could be quite time-consuming. How to re-
duce the complexity of the adaptive algorithm without too much per-
formance tradeoff is our ongoing research. Finally, the current adap-
tive algorithm still uses the same Wiener filter at every lost block
within each pass. This can be improved by adapting the filter to lo-
cal statistics, as in [12]. However, the complexity will be further
increased. How to implement it efficiently is another future topic.
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