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ABSTRACT

In this paper we present a theoretical study of the errors due

to imperfect reconstruction and to quantization in hybrid fil-

ter bank (HFB) analog/digital (A/D) converters, that are non

uniform i.e., with K channels and an arbitrary ratio M of the

M -fold expanders (M ≤ K). We propose then a new method

of simulation for such HFB A/D converters that avoids any

numerical computation of differential equation solutions. The

results of simulation are compared with theoretical ones. Mo-

reover, in HFB A/D converter studies, the effect of quantiza-

tion noise is generally indicated by its average power at the

output of the HFB, when it is M -cyclostationary. This paper

shows on an example that the variance of the global error at

the HFB output can vary a lot in a period of M samples.

1. INTRODUCTION

Hybrid filter bank (HFB) Analog/Digital (A/D) systems have

been studied for several years ([8], [4], [5], [2]). The motiva-

tion of this research comes from the demand for higher data

rates encountered in many domains, as in wireless communi-

cation. In [1], a new HFB having more degrees of freedom

than the classical ones has been studied, it is represented in

Fig. 1. In this quoted paper, a natural generalization of the
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Fig. 1. HFB A/D converter with K channels. In each channel

there is, from left to right, an analog analysis filter, a MT -

periodic sampler, an infinite uniform scalar quantizer, a M -

fold expander and a digital synthesis filter.

classical HFB was presented, called non uniform HFB and

obtained by reducing the ratio M of the M -fold expanders

without modifying the number K of channels. It was then

shown how the excess parameters can be used for minimizing

the aliasing and the distorsion under the constraint of a given

quantization noise amplification G, as it was done in [3]. Con-

sequently, constrained minimization was applied in such a

way that the output signal x̂(n) is as close to the ideal sam-

pled signal x�(n) = x(nT ) as possible, where x(t) is the

input signal. It is well known [6] that in each channel, the

quantization noise obtained after the synthesis filter is M -

cyclostationary. In [1], the mean aliasing which was calcu-

lated according to the constraint G, gave only qualitative in-

formation about the precision of the HFB A/D converter. In

this paper, all the values of the periodic-M variance of the

error signal x�(n) − x̂(n) are calculated as figures of merit.

The design of the HFB A/D according to the method de-

scribed in [1] gives the impulse response coefficients of the

K digital synthesis FIR filters fk(n) (−N ≤ n < N and

0 ≤ k < K). This design uses the 2π-periodic functions(
Hd

k (ω)
)
0≤k<K

which verify

∀ω ∈]−π , π], Hd
k (ω) = Hk(jω/T ), (1)

where Hk(jΩ) (0 ≤ k < K) are the frequency responses

of the analog analysis filters. The input signal x(t) is sup-

posed to be a wide sense stationary (WSS) stochastic process

with zero mean. The sampling Nyquist condition—or possi-

bly stronger—on the input signal x(t) is assumed:

∃ωmax ∈ ]0 ; π[,∀Ω ∈ R, |TΩ| ≥ ωmax ⇒ Sx(Ω) ≈ 0 (2)

with Sx(Ω) the power spectrum density (psd) of x(t).
In the next section, the variance of the error x�(n)− x̂(n)

is given without considering the quantization. In Section 3,

the quantization noise is considered. In Section 4, a new sim-

ulation method for HFB A/D converters is described. The

proposed simulation has the advantage over classical ones be-

cause it does not require any numerical solution of differential

equations. The theoretical study of sections 2 and 3 permits

to evaluate independently the error due to imperfect recon-
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struction from the error due to quantization. And so the theo-

retical and simulated global errors can be compared. Finally,

practical results are presented in section 5 in order to validate

theoretical results.

2. HFB WITHOUT QUANTIZATION

In Fig. 1, the entire HFB A/D converter is described. The sig-

nals xk(m) (m ∈ Z and 0 ≤ k < K) are the K outputs of

the analysis device. When no quantization is considered and

the input signal x(t) is applied (i.e., when xq
k(m) = xk(m)

for 0 ≤ k < K and m ∈ Z), let x̂0(n) denote the HFB output

signal. It can be expressed according to the ideal signal x�(n),
the coefficients of the digital synthesis filters fk(n) and coef-

ficients hd
k(n) which are the inverse Fourier transforms of the

functions Hd
k (ω) introduced in (1):

x̂0(n) =
K−1∑
k=0

+∞∑
�=−∞

fk(n−M�)xk(�) (3)

=
K−1∑
k=0

+∞∑
�=−∞

fk(n−M�)
+∞∑

m=−∞
hd

k(m)x�(M�−m). (4)

Note that the summation on � is actually finite, since the syn-

thesis filters are FIR. Since the input signal x(t) is supposed

WSS and centered, the sampled signal x�(n) is a centered

discret time WSS stochastic process, with an autocovariance

function noted φx(n). The output signal x̂0(n) is also cen-

tered and the variance ε2(n) of the error x�(n) − x̂0(n) can

be expressed as

ε2(n) = φx(0) − A + B (5)

with

A = 2
K−1∑
k=0

∑
l

fk(n − Ml)
∑
m

hd
k(m)φx(n − Ml + m)

B =
∑
k,k′

∑
l,l′

fk(n − Ml)fk′(n − Ml′)
∑

m,m′
hd

k(m)hd
k′(m′)×

φx(Ml − m − Ml′ + m′) (6)

Note that the summation on the indexes m and m′ is infinite.

In order to get rid of this problem, the equation (6) can be

rewritten by using the power spectrum density of x�(n), noted

Sx(ω), and the functions Hd
k (ω) of equation (1):

A =
1
π

K−1∑
k=0

∑
l

fk(n − Ml) ×
∫ π

−π

Hd
k (ω)Sx(ω)eiω(n−Ml)dω (7)

B =
1
2π

K−1∑
k,k′=0

∑
l,l′

fk(n − Ml)fk′(n − Ml′) ×
∫ π

−π

Hd
k (ω)Hd

k′(ω)Sx(ω)eiωM(l−l′) dω (8)

This expression shows that the signal x�(n) − x̂0(n) is M -

cyclostationary and its variance can be expressed with a finite

summation on the indexes l and l′ in (8).

3. HFB WITH QUANTIZATION

Conditions of high resolution quantization are assumed, that

is the K quantization noises are mutually wide sense station-

ary, white, centered and uncorrelated. Let bk(m) = xk(m)−
xq

k(m) be the quantization noise of the kth channel and σ2
k its

variance. Let vk(n) be the output of the filter Fk(ω) when

xq
k(m) = bk(m) in Fig. 1 and let v(n) =

∑K−1
k=0 vk(n)

be the quantization noise at the output of the HFB; v(n) =
x̂(n)− x̂0(n) where x̂0(n) is the output signal without quan-

tization in the HFB (see Section 2). Let us introduce the

polyphase representation of filter Fk(ω):

Fk(ω) =
M−1∑
�=0

Fk,�(Mω)e−i�ω (0 ≤ k < K), (9)

and the matrix F(ω) = [Fk,�(ω)] (0 ≤ � < M , 0 ≤ k < K)
of dimension M×K, which is the polyphase representation of

the synthesis filter bank. The kth column, Fk(ω), of F(ω) is

the M -fold polyphase representation of the filter Fk(ω). The

M -fold blocked versions vk(m) =
(
vk(mM), vk(mM −

1), . . . , vk(mM − M + 1)
)T

of vk (0 ≤ k < K) are mu-

tually WSS ([6]) and uncorrelated. For a matrix A, AT (resp.

AH) denotes the transpose (resp. the adjoint) of A. The power

spectra (psd matrix Svk
(ω)) of vk is given by

Svk
(ω) = σ2

k Fk(ω)Fk(ω)H (10)

hence the psd matrix Sv(ω) of v (v is the M -fold blocked

version of v(n)) satisfies

Sv(ω) =
K−1∑
k=0

σ2
k Fk(ω)Fk(ω)H = F(ω)∆F(ω)H (11)

where ∆ is the variance-covariance matrix of the column vec-

tor b(m) = (b0(m), . . . , bK−1(m))T . Hence the average

power E[|v(n)|2] of the quantization noise at the HFB out-

put is periodic-M with, for 0 ≤ � < M ,

E
[
v(mM − �)2

]
=

K−1∑
k=0

σ2
k

2π

∫ +π

−π

|Fk,�(ω)|2 dω

=
K−1∑
k=0

σ2
k

∑
u

fk(Mu − �)2 (12)

and its temporal average Pav = 1
M

∑M−1
�=0 E

[
v(mM − �)2

]
is given by the relation

Pav =
1

2πM

K−1∑
k=0

σ2
k

∫ +π

−π

|Fk(ω)|2 dω =
1
M

K−1∑
k=0

σ2
k

∑
u

fk(u)2

(13)
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So the variance of the global error can be expressed, assuming

that the error due to unperfect reconstruction is uncorrelated

with the error due to quantization:

E[|x�(n) − x̂(n)|2] = ε2(n) + E[v(n)2]. (14)

4. SIMULATION METHOD

In our simulations it is assumed that each FIR synthesis filter

Fk(ω) has 2N non zero coefficients. In order to preserve the

symmetry between the K quantizers (same quantization step

and same number of bits) with an optimal bit allocation [7],

we adjust the gain of each analog filter (see Fig. 2) to equal-

ize the variance of the subband signals xk(m) (0 ≤ k < K)
when the input signal has a constant psd in the useful fre-

quency band (see equation (2)). Hence all the quantizer have

the same distortion σ2, and the value

G =
1
M

K−1∑
k=0

N−1∑
n=−N

f2
k (n) (15)

represents the noise amplification gain. We used then the

method presented in [1] for computing the optimal synthesis

filters of the HFB.

Classical numerical methods of simulation for analog de-

vices lead to an approximation error, due to the numerical

resolution of the differential equations of filtering. This error

could be mixed with the global error (14) so that the interpre-

tation of practical results would be wrong. In order to get rid

of this problem, an input signal

x(t) =
P∑

p=1

√
2Ap sin(Ωpt + Φp) (16)

can be considered, where (Φp)1≤p≤P are P independent ran-

dom variables uniformly distributed in the interval [0 ; 2π].
The frequencies {Ωp}1≤p≤P are determinist and regularly

spaced in the interval [0 ; ωmax/T ]. The frequency ωmax in-

troduced in (2) represents the sampling condition (it is less

than π when this condition is stronger than that of Nyquist).

So the ideal signal in this case is

x�(n) =
P∑

p=1

√
2Ap sin(ΩpTn + Φp), (17)

its correlation function satisfies φx(k) =
P∑

p=1

A2
p cos(ΩpTk)

and its power spectrum density is given by

Sx(ω) = π

P∑
p=1

A2
p

[
δ(ω − ΩpT ) + δ(ω + ΩpT )

]
, (18)

for ω ∈ ]−π ; π[. For this particular power spectrum den-

sity, the integrals in (7) and (8) can be replaced by finite sum-

mations. In a steady state, the K output signals of the HFB

analysis device are:

xk(m) =
P∑

p=1

|Hk(iΩp)|
√

2Ap ×

sin [ΩpTMm + Φp + arg(Hk(iΩp))] (19)

It is then easy to compute the output signal, assuming that the

unsteady state vanished:

x̂(n) =
K−1∑
k=0

∑
m

xq
k(m)fk(n − Mm). (20)

For a given design of a HFB A/D converter, simulations

can be done with the method described in this section. As-

suming that the power spectrum density of the ideal signal

x�(n) is given by equation (18), the variance of the global

error (14) can be estimated and this estimation can be com-

pared with the theoretical value obtained from (5)—with (7–

8)—and (12)—with σ2
k = σ2 = q2/12, where q is the quan-

tization step shared by all the quantizers.

5. PRACTICAL RESULTS
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Fig. 2. Frequency response magnitudes of the analog analysis

filters.

In order to do the estimation, Niter realizations of the ran-

dom signal x�(n) (see section 4) are considered. For each

realization, the output signal x̂(n) is calculated, according to

equation (20) and the empirical mean square of x�(n)− x̂(n)
is calculated for each time n with the Niter realizations. A

given design of HFB is considered with K = 6 (number of

channels) and M = 4 (ratio of the M -fold expander). The

6 digital synthesis filters have 32 coefficients (N = 16). A
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sampling condition stronger than that of Nyquist is assumed

with ωmax = π − π
20 . The 6 analog analysis filters are sec-

ond order filters, as shown in Fig. 2. This design corresponds

to G = 6.81 dB, a mean aliasing equal to −100.2 dB and

aliasing functions represented in Fig. 3.

In equation (18), the amplitude values are Ap = 1/
√

P
for 1 ≤ p ≤ P , in order to have φx(0) = 1. We choose P =
400 and Niter = 200. For a given value of the quantization

step, the right member of equation (14) is evaluated thanks

to equation (5)—with (7–8)—and equation (12). The results

are displayed on Table 1 according to the time n modulo M .

Then a simulation is done, following the method described in

section 4 and the estimation of the variance is obtained as it

is described at the end of the previous section. The results are

displayed on Table 1.

Var[x�(n) − x̂(n)] in dB

theoretical estimated

n mod M 0 1 2 3 0 1 2 3

q = 2.10−4 -80 -76 -75 -82 -79 -76 -75 -82

q = 10−4 -85 -82 -80 -88 -85 -82 -81 -88

q = 5.10−5 -88 -86 -84 -91 -88 -86 -85 -91

q = 2.10−5 -89 -89 -86 -93 -90 -89 -87 -94

q = 10−5 -90 -89 -87 -94 -91 -90 -87 -94

Table 1. Theoretical and estimated values of the periodic-M
variance of the global error x�(n) − x̂(n) for the different

values of n modulo M .

We can see on Table 1, comparing estimated with theo-

retical values that the hypothesis assumed in order to obtain

the theoretical results in sections 2 and 3 are relevant. If the

quantization step becomes too small, the performances do not

increase any more. Moreover this study highlights the fact

that the average variance of the global error is not a sufficient

information for evaluating the performances of an HFB A/D

converter. Indeed, a variation of nearly 7 dB can be observed

on a M -period of the variance.

6. CONCLUSION

In order to give a relevant information on the precision of a

non uniform HFB A/D converter with M -fold expanders, we

gave the expression of the periodic-M variance of the global

error. This theoretic study has been validated by a simulation

method, which get rid of problems related to the numerical

computation of differential equations due to analog devices.

We shown on an example that the variance of the global error

can vary a lot in a period of M samples.
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