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ABSTRACT
In this paper, two parameterization methods are proposed for M -
channel, first-order unimodular filter banks. For such a system
with Mcmillan degree of ρ, the proposed parameterizations can
reduce the number of free parameters by ρ2, compared with exist-
ing methods. At the sanme time, the resulting structures are still
complete and minimal in the Mcmillan sense. Besides, perfect re-
construction, unimodular and the filter length constraints can be
all structurally imposed. Moreover, the proposed structures offer
unconstrained optimizations in the design, which can be hardly
achieved by existing methods.

1. INTRODUCTION

An M × M matrix polynomial matrix E(z) is said to be unimod-
ular if det{E(z)} = c �= 0 [1–5]. When such an E(z) is the
polyphase matrix of a filter bank (FB), the corresponding FB is
called as the unimodular FB. This subclass of FBs is attractive as
the perfect reconstruction (PR) property can be achieved with all
the analysis and synthesis filters being FIR and causal [5]. In addi-
tion, an M -channel unimodular FB always has a system delay of
M −1, which is the minimum among all M -channel FIR PR FBs.
Moreover, it was shown in [4, 5] that unimodular FBs can yield
high coding gain for highly correlated signals. Other interesting
properties of unimodular matrices can be found in [6, 7].

In this paper, we study the parameterization of first-order uni-
modular PR FBs, where all the analysis and synthesis filters are
of length 2M each. From the transform point of view, they corre-
spond to lapped unimodular transforms [3]. The factorization of
these systems through the degree-one building block was derived
by Phoong el al. in [5]. Recently, their lifting-based implemetan-
tions along with structural regularity were proposed in [6,7]. How-
ever, as we will show later, the structures presented in these works
yield extra design parameters. Besides, when the design parame-
ters are quantized, the first-order restriction may not be satisfied,
i.e., the filter length may be longer than 2M . Note that in some
applications, especially in image coding, longer filter length will
lead to the annoying ringing artifacts [2]. Taking these facts into
account, we revisit the parameterization of first-order unimodular
FBs in this paper. Two new parameterizations based on the SVD
and the lifting structure were presented. Both of them are minimal
and complete with fewer parameters than those required in the ex-
isting works. Besides, the new structures can lead to unconstrained
optimization in the design. They can also structurally impose the
first-order, or the filter length restriction in implementation.

Notations: For simplicity of presentation, we only consider
real-coefficient FBs in this paper. Vectors and matrices are indi-
cated in bold-faced letters. Subscripts will be provided only if

their sizes are not clear from the context. Superscript T stands for
transposition. Special matrices used extensively throughout this
paper are the identity matrix I and the null matrix 0.

2. REVIEW OF DEGREE-ONE FACTORIZATION

Consider an M -channel unimodular FB with all analysis and syn-
thesis filters of the same length L = 2M each. Let E(z) =
E0 + E1z

−1 and R(z) = R0 + R1z
−1 represent its analysis

and synthesis polyphase matrices, respectively. The McMillan de-
gree of E(z), denoted as ρ, was shown to be equal to the rank of
E1 [3]. In [5], two-types of degree-one factorizations were pro-
posed for first-order unimodular E(z), both of which are complete
and minimal in the McMillan sense.

In Type-I factorization, E(z) is decomposed as a product of
an invertible matrix E(1) = E0 + E1 and ρ-many degree-one
unimodular matrices D̂i(z) (for i = 1, · · · , ρ − 1) as follows:

E(z) = E(1)D̂1(z)D̂2(z) · · · D̂ρ(z), Type I (1)

where D̂i(z) = I − ûiv̂
†
i + ûiv̂

†
i z

−1(for i = 1, · · · , ρ − 1),
while ûi and v̂i are M × 1 vectors satisfying v̂

†
i ûi = 0. As

v̂
†
i ûi = 0, it can be calculated that the inverse of D̂i(z) takes the

form of D̂−1
i (z) = I + uiv

†
i − z−1uiv

†
i . Since D̂−1

i (z) is a
degree-one causal matrix, it is clear that R(z) = E−1(z) is also
causal with degree of ρ. It should be pointed here that all order-one
unimodular matrices can be factorizated into (1). However, E(z)
and its inverse R(z) generated by (1) may not necessarily have
order one. Instead, their orders can vary from 1 to ρ, i.e., the filter
length can vary from 2M to (ρ + 1)M . To meet the first-order
condition, ûi and v̂i in (1) need to further satisfy [5–7]

v̂
†
i ûj = 0, i.e., ûj⊥v̂i, 1 ≤ i, j ≤ ρ. (2)

It was shown in [5] that through some simple mathematical ma-
nipulations, E(z) and R(z) can be explicitly expressed into the
order-one form. Let us define two matrices Û and V̂ from ûi and
v̂i as follows: Û =

�
û1 û2 · · · ûρ

�
and V̂ =

�
v̂1 v̂2 · · · v̂ρ

�
.

Then, denote the M × M matrix Q as Q = Û V̂†. Under (2), the
order-one form for E(z) in (1) is [5–7]

E(z) = E(1)(I − Q + Qz−1). (3)

Accordingly, its inverse R(z) can be shown to be [5–7]

R(z) = E
−1(1)(I + Q − Qz−1). (4)

An equivalent, but alternative degree-one factorization of E(z)
is as follows [5]

E(z) = E0D0(z)D1(z) · · ·Dρ−1(z), Type II, (5)
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where E0 is an invertible matrix and each Di(z) is a degree-one
unimodular matrix taking the form of Di(z) = I+z−1uiv

†
i , with

the M × 1 vectors ui and vi verifying

v
†
i uj = 0, i.e., uj⊥vi, 1 ≤ i, j ≤ ρ. (6)

Likewise, denote U =
�
u1 u2 · · ·uρ

�
, V =

�
v1 v2 · · ·vρ

�

and P = Û V̂†. Then, under (6), E(z) and R(z) generated by
Type II factorization can be re-written into [5–7]

E(z) = E0(I + Pz−1), (7)

R(z) = (I − Pz−1)E−1
0 (8)

Remarks: To design a first-order unimodular FB through (1)
or (5), one needs to parameterize an M × M invertible matrix
E(1) or E0, 2ρ-many M × 1 vectors {ûi, v̂i} or {ui,vi} (1 ≤
i ≤ ρ) under the constraint of (2) or (6). Altogether, this requires
M2 + 2Mρ − ρ2 parameters for real-coefficient systems [6, 7].

3. PROPOSED STRUCTURES

In this paper, we propose more efficient parameterizations with
fewer parameters, while still retaining the completeness and the
minimality of the structure. Note that for any first-order unimodu-
lar FB, its polyphase matrices E(z) and R(z) can be always repre-
sented through the order-one forms in (3)-(4) or (7)-(8). Hence, in-
stead of using the M ×1 vectors {ûi, v̂i} or {ui,vi} (1 ≤ i ≤ ρ)
as free parameters, we will characterize the M ×M matrices Q in
(3)-(4) and P in (7)-(8). The following Lemma presents the neces-
sary and sufficient conditions to yield an PR unimodular FB with
degree of ρ.

Lemma 1. E(z) and R(z) given by (3)-(4) or (7)-(8) correspond
to a PR unimodular FB with degree of ρ if and only if P and Q

satisfy (1) rank(P) = rank(Q) = ρ; (2) P2 = Q2 = 0, i.e., they
are nil-potent matrices with nil-potency index of 2.

The proof of Lemma 1 can be easily obtained by substituting
(3)-(4) or (7)-(8) into the PR restriction R(z)E(z) = IM . Details
are omitted here. Lemma 1 suggests that the design of a first-order
unimodular FB can be converted into the parameterization of an
M × M matrix X verifying

rank(X) = ρ and X
2 = 0 (9)

In what follows, we will investigate the characterizations of such
a matrix through the SVD and the lifting structure in Section 3.1
and Section 3.2, respectively.

3.1. The SVD-based Parameterization

Note that using the SVD, any M × M matrix X with rank of ρ
can be always represented as X = U∆VT , where ∆ is a diag-
onal matrix with non-zero diagonal elements, while U and V are
M × ρ orthonormal matrices. Taking advantage of the orthonor-
mal property of U and V, one can derive that X2 = 0 if and only
if

V
T
U = 0. (10)

Eq. (10) implies that X2 = 0 holds if and only if the M × ρ
orthonormal matrix V is in the null space of U. Let the M×(M−

ρ) matrix U⊥ denote the orthogonal compliment of U. Thus, V
can be completely represented by

V = U
⊥
W, (11)

where W is an (M−ρ)×ρ matrix. The orthonormal property of V
further requires that W should be orthonormal as well. Note that
by applying Sylverter’s rank inequality [8] to the equation X2 =
0, we have rank(X) + rank(X) − M < 0; hence, M − ρ > ρ.
This indicates that W is a “tall” matrix with its row dimension
greater than its column dimension. Hence, W can be chosen to be
orthonormal.

From the above analysis, we know that X satisfying (9) can
be always characterized as

X = U∆W
T (U⊥)T (12)

Note that once U is found, its orthogonal compliment U⊥ can be
obtained through the Gram-schmidt orthogonalization process [8].
Hence, X can be fully characterized through an M × ρ orthonor-
mal matrix U, a ρ × ρ non-singular diagonal matrix ∆ and an
(M − ρ) × ρ orthonormal matrix. It is obvious that ∆ contains
ρ free parameters. Also, recall that using the Givens decomposi-
tion, an i × j orthogonal matrix can be completely parameterized
by ij − j(j+1)

2
parameters. Hence, the degrees of design freedom

held by X are

Mρ −
ρ(ρ + 1)

2
+ (M − ρ)ρ −

ρ(ρ + 1)

2
+ ρ = 2ρ(M − ρ).

Accordingly, if P or Q are parameterized as in (12), the to-
tal number of free parameters in (3) or (7) is M2 + 2ρ(M − ρ)
(The extra M2 comes from the M × M invertible matrix E(1)
or E0). As we have mentioned before, if {ûi, v̂i} or {ui,vi} are
used directly as free parameters, M2 + 2Mρ − ρ2 parameters are
required in (1) or (5). Therefore, using the proposed parameteriza-
tion through the SVD, we can gain a reduction of ρ2 parameters.
Note that as ρ ≤ M/2, the maximum number of reduced parame-
ters is �M/2�2.

Not only does the proposed SVD-based parameterization re-
duce the number of free parameters, it also facilitates the uncon-
strained optimization in the design. Note that in (12), the Givens
rotation angles in U and W as well as the diagonal elements in
∆ can be arbitrarily varied under a mild condition ∆(i, i) �= 0
(1 ≤ i ≤ ρ). On the other hand, the parameterizations of {ûi, v̂i}
or {ui,vi} should satisfy the constraints of (2) or (6), which make
the optimization more complicated. Moreover, just like the degree-
one factorization in (1) and (5), the proposed structure is also com-
plete and minimal in the Mcmillan sense. Proof of both the com-
pleteness and the minimality is straightforward. Details are hence
omitted here.

3.2. The Lifting-based Parameterization

Although the SVD-based parameterization can reduce the num-
ber of free parameters, it will incur high computation cost due to
the presence of Givens rotation matrices. For both (1) and (5), it
was shown in [6, 7] that the degree-one building block D̂i(z) and
Di(z) can be further decomposed into a series of lifting steps. The
lifting factorization provides fast, reversible and multiplierless im-
plementations of. Besides, one can also structurally impose the
regularity condition. Motivated by the work in [6, 7], we propose
a new lifting-based implementation for E(z) and R(z). The main
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difference here is that our lifting structure is based on the order-
one form in (3)-(4) or (7)-(8), while the one in [6, 7] stems from
the degree-one factorization in (1) and (5). To this end, we will
consider a new parameterization of X satisfying (9).

Note that since rank(X) = ρ, X can be decomposed into

X = UVT , (13)

where both U and V are M × ρ matrices with rank of ρ. The
condition X2 = 0 implies that

UVTUVT = 0 ⇔ VTU = 0 (14)

Eq. (14) suggests that the chacterization of X in (9) can be con-
verted into two full rank matrices U and V satisfying (14)

As U is of full rank, after proper row permutation, its ρ × ρ
lower matrix can be made to be invertible. In other words, there
exists an M × M permutation matrix T so that U can be repre-
sented as

U = T

�
Uu

Ud

�
= T

�
A

Iρ

�
Ud, (15)

where Ud is an ρ×ρ matrix, Uu is an (M −ρ)×ρ arbitrary matrix
and A = UuU

−1
d . Next, denote the ρ × M matrix VT as

VT =
�
Vl Vr

�
T

T , (16)

where the submatrices Vl and Vr are of sizes ρ×(M−ρ) and ρ×ρ,
respectively. Then, substituting (15) and (16) into (14) yields

Vr = −VlA (17)

Therefore, under the constraint of (14), VT in (16) can be re-
written into

VT = Vl

�
IM−ρ −A

�
. (18)

Accordingly, X = UVT can be completely parameterized by

X = UVT = T

�
A

Iρ

�
B

�
IM−ρ A

�
T

T , (19)

in which T is an M × M permutation matrix, A is an arbitrary
(M − ρ) × ρ matrix and B = UdVl is a ρ × (M − ρ) full rank
matrix.

Now, let us get back to the order-one form in (3). If Q is
parameterized through (19), one can prove that E(z) and R(z)
can be expressed as

E(z) = E(1)T

�
I A

0 I

��
I 0

−Bz−1 I

��
I −A

0 I

�
T

T (20)

and

R(z) = T
T

�
I −A

0 I

��
I 0

Bz−1 I

��
I A

0 I

�
TE

−1(1) (21)

In (20) and (21), as A and B are of sizes (M − ρ) × ρ and
ρ × (M − ρ), respectively, the total number of free parameters
is also M2 + 2ρ(M − ρ), which is the same as required in the
SVD-based parameterization. From the implementation perspec-
tive, (20) and (21) are more advantageous since they lead to lifting-
based implementations, as shown in Figure 1. In fact, when ρ = 1,
they boil down to the degree-one lifting structures proposed in
[6, 7]. But when ρ > 1, the structure in [6, 7] will require extra ρ2

parameters than that of (20). Also, our proposed structure is more
robust to quantization. That is, even when A and B are quantized,

the resulting E(z) and R(z) still satisfy the PR, unimodular and
order-one constraints. Whereas, for the structure in [6, 7], if the
lifting coefficients are quantized, the order (or filter length) of the
resulting FB may be affected.

Remarks:

1. By parameterizing Q through (19), one can get a similar
lifting structure for Type II order-one form in (7). In fact,
it is not difficult to show that the resulting lifting structure
of (7) can be obtained by replacing z−1 with (z−1 − 1) in
(20) and (21).

2. In (20) and (21), the total number of possible permutation
matrix T is M ! for an M -channel system. To simplify
the optimization, the permutation matrix T is usually set
to be, e.g., T = I. However, in this way, one cannot get
global optimal solution. On the other hand, the SVD-based
structure does not contain any permutation matrix, which is
more attractive in unconstrained optimization.
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Figure 1: The proposed lifting-based implementations for first-
order unimodular filter banks. (a) The analysis bank E(z). (b)The
synthesis bank R(z).

4. DESIGN EXAMPLES

This section presents two design examples using the proposed pa-
rameterizations. The optimization criteria is the coding gain, in
which the input signal is modeled as an AR(1) process with a co-
efficient of 0.95.

Design Example I in Figure 2is a four-channel (M = 4),
degree-two (ρ = 2) unimodular FB. It is obtained by applying the
SVD-based parameterization to (3), which requires 28 parameters
in total. Whereas, if the degree-one factorization in (1) is used, 32
parameters is required. Figure 2 shows the frequency response of
the resulting design. The coding gain for this example is 8.47dB,
which is greater than the 7.96dB of paraunitary first-order FB ??.

Design Example II in Fig. 3 is based on the lifting structure in
(20)-(21) with M = 8 and ρ = 2. The invertible matrix E(1) in
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(20) is chosen to be the integer-approximated DCT. Its coding gain
is 9.12dB. The resulting free matrices A and B are listed below.

A =

�
�

103
512

− 165
256

− 11
256

137
512

11
256

21
512

− 107
512

− 125
256

23
128

23
256

169
512

53
128

�
�

T

B =

�
�
− 43

256
− 71

512
− 5

64
− 67

512
− 3

512
47
512

− 137
512

− 85
512

− 47
512

− 43
256

− 5
256

27
256

�
�

Since each element in A and B takes the form of k/2n, this FB
has a multiplierless implementation.
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Figure 2: Frequency response of a 4-channel order-one unimodu-
lar FB with ρ = 2. (a)The analysis filters. (b)The synthesis filters.

5. CONCLUSION

This paper proposes two new parameterization methods for first-
order unimodular filter banks. Both of them are complete and min-
imal in the Mcmillan sense. Compared with existing methods, the
proposed factorizations can reduce the number of free parameters
by ρ2, where ρ is the degree of the FB. From the implemenation
perspective, they are robust to quantization, which can structurally
impose the PR, unimodular properties and first-order constraint.
Two design examples are presented to verify the vailidity of the
theory. It should be pointed that although our derivations in this
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Figure 3: Frequency response of an 8-channel order-one unimodu-
lar FB with ρ = 2. (a)The analysis filters. (b)The synthesis filters.

paper focus on the real-coefficient system, they can be easily ex-
tended to complex systems as well.
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