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Abstract— This paper studies the noise reduction design
problem for oversampled filter banks (FBs) with perfect re-
construction (PR) constraint. Both the optimal design and
worst case design are considered, where the former method
caters for the noise with known power spectral density (PSD)
and the latter one for the noise with unknown PSD. Explicit
formulae involving only algebraic Riccati equation and matrix
manipulations are provided for the general (IIR or FIR)
oversampled PR FBs.

I. INTRODUCTION

Recently a great deal of research has been devoted to
oversampled FBs with redundant signal expansions. The noise
reduction properties, extra design freedom and improved ca-
pacity for signal and information representation are the main
advantages of oversampled FBs [1], [3], [6], [7]. An elegant
frame-theoretic approach is presented for the analysis and
design of general oversampled FBs in [1], [2], [3]. Most of the
research focuses on finite impulse response (FIR) oversampled
FBs or infinite impulse response (IIR) FBs with some special
structures, and there have been no unified and computationally
effective tools available for systematic analysis and design of
both IIR and FIR oversampled FBs. In our companion paper
[5], explicit and numerically efficient formulae to compute
the tightest frame bounds, to obtain the dual FB frame and to
construct a tight (paraunitary) FB frame from an arbitray FB
(FIR or IIR) satisfying perfect reconstruction (PR) condition
are provided.

In this paper, we will consider the noise reduction problem
for PR oversampled FBs based on the results of [4], [5].
Specifically, we will consider the following problem: given
an analysis FB satisfying PR condition, how to pick up one
synthesis FB from the set of all PR synthesis FBs such that
it is “optimal” with respect to the noise assumption. We
will present direct computational methods for two classes
of noises: colored noises with known power spectral density
and general noise with unknown power spectral density. For
colored noises with known PSD, it is well-known that the
optimal synthesis FB is the one whose range is orthogonal to
the noise component [2]. However, as shown in [1], there is a
lack of efficient method to get the synthesis FB corresponding

to the dual frame which is optimal for white noises, let alone
the general colored noise. A predictive quantization method
is proposed in [2] to reduce the quantization noise. For noise
with unknown PSD, the effective worst-case design or H∞
filtering method is studied for critically-sampled FBs [11],
[13], [12], In such case the PR synthesis FB (if exists) is
unique for a given analysis FB, and there is no extra design
freedom for optimal noise reduction subject to PR. In this
paper, we study the noise reduction of oversampled FBs with
PR constraint. It is worthwhile to point out that our method is
frame theory based and the synthesis FB (dual frame) is not
necessarily causal (however stability is guaranteed). Therefore
simpler formulae are expected compared to the standard H∞
filtering where the filters are confined to the causal and stable
set.

II. PRELIMINARIES

This sections collects some important results on oversam-
pled FBs from [1]. It also reviews the state-space com-
putational method for analysis and design of frames with
oversampled FBs proposed in [4], [5]. Please refer [1], [3],
[9], [10], [5] for more details.

A. PR oversampled FBs

Consider the N -channel oversampled FB with decimation
factor M . Let Hk(z) and Fk(z), k = 0, . . . N − 1, be
the transfer functions of the analysis and synthesis filters,
respectively. Write Hk(z) and Fk(z) as

Hk(z) =
∞∑

n=−∞
hk[n]z−n and Fk(z) =

∞∑
n=−∞

fk[n]z−n,

where hk[n] and fk[n] are impulse response coefficients of
Hk(z) and Fk(z), respectively. Denote E(z) and R(z) the
polyphase matrix of the analysis filters {Hk(z)} and the
synthesis filters {Fk(z)} , respectively, where Eij(z) =∑∞

n=−∞ hi[nN − j]z−n, and Rji(z) =
∑∞

n=−∞ fi[nN −
j]z−n, for i = 0, . . . , N − 1 and j = 0, . . . , M − 1. The
oversampled filter bank with noise after blocking is shown in
Fig. 1.

For an analysis filter bank {Hk(z)} with polyphase matrix
E(z), recall the following results from [1], [3]
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Fig. 1. Oversampled filter bank with noise after blocking

Lemma 1: {Hk(z)} implements PR if and only if its
polyphase matrix E(z) is of full column rank on the unit circle.

Lemma 2: Assume that E(z) has full rank on the unit
circle. Then all synthesis polyphase matrices R(z) can be
characterized by

R(z) = R0(z) + U(z)(IN − E(z)R0(z)) (1)

where R0(z) = (E˜(z)E(z))−1E˜(z) is the synthesis FB
corresponding to the dual frame and E˜(z) = E∗(z−1).

B. State space representations and factorization

A transfer matrix E(z) =
∑∞

i=−∞ Eiz
−i ∈ C

N×M is
called causal if Ei = 0 for all i < 0, is called anti-causal
if Ei = 0 for all i > 0, and is called strictly anti-causal if
Ei = 0 for all i ≥ 0. Note that the anti-causal E(z) include
strictly anti-causal E(z) as a special case with E0 = 0.

Definition 1: For any rational causal transfer matrix
E(z) =

∑∞
i=0 Eiz

−i ∈ C
N×M , if the matrices A ∈

R
n×n, B ∈ R

n×M , C ∈ R
N×n and D ∈ R

N×M are such that
E(z) = D+C(zI−A)−1B, then (A,B, C, D) is called a state

space realization of E(z) and denoted as E(z) =
[

A B
C D

]
.

In such case, E(z) is described by the following causal state
space model

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

The realization

[
A B
C D

]
is minimal if the dimension of A

is minimal.
Definition 2: For any rational anti-causal transfer matrix

E(z) =
∑0

i=−∞ Eiz
−i ∈ C

N×M , if the matrices A ∈
R

n×n, B ∈ R
n×M , C ∈ R

N×n and D ∈ R
N×M are such that

E(z) = C(z−1I − A)−1B + D, then (A,B, C, D) is called
an anti-causal state space realization of E(z) and denoted

as

[
A B
C D

]
ac

. In such case, E(z) is described by the

following anti-causal state space model

x(k) = Ax(k + 1) + Bu(k + 1)
y(k) = Cx(k) + Du(k).

For any transfer matrix E(z), if E(z) has a causal state-space

realization E(z) =
[

A B
C D

]
, then E˜(z) has an anti-causal

state-space realization E˜(z) =
[

A∗ C∗

B∗ D∗

]
.

A rational transfer matrix N(z) is called inner if N(z) is
causal stable satisfying N˜(z)N(z) = I for all z = ejθ, θ ∈
[0, 2π). Note that in such case N˜(z) is anti-causal and
stable. Note also that the inner condition is equivalent to the
paraunitary condition [1], [3]. Thus, inner implies paraunitary.

Remark 1: For a given transfer matrix, it might have both
causal and anti-causal realizations, and it might have only
causal (anti-causal) realization, depending on the location of
its poles and zeros. For example, E1(z) = 1

z−0.5 has the

causal realization E1(z) =
[

0.5 1
1 0

]
, and also has the anti-

causal realization E1(z) = −2 + −4
z−1−2 =

[
2 −4
1 −2

]
ac

.

However, E2(z) = z has only anti-causal realization E2(z) =[
0 1
1 0

]
ac

, and E3(z) = z−1 has only causal realization

E3(z) =
[

0 1
1 0

]
.

For E(z) ∈ C
N×M with a minimal causal realization[

A B
C D

]
. Assume that

A1)

[
A − ejθI B

C D

]
has full column rank for all θ ∈

[0, 2π), and D has full column rank.
Then E(z) can be factorized in the following form

E(z) = N(z)M(z)−1 (2)

where M(z) and N(z) are rational transfer matrices with
N(z) inner, and

[
M(z)
N(z)

]
:=

⎡
⎣ A + BF BW− 1

2

F
C + DF

W− 1
2

DW− 1
2

⎤
⎦ (3)

W = W ∗ = D∗D + B∗XB (4)

F = −W−1(B∗XA + D∗C), (5)

and X is the unique stabilizing solution of the following
Riccati equation

A∗XA−X+C∗C−(A∗XB+C∗D)W−1(B∗XA+D∗C) = 0.
(6)

Theorem 1: Suppose that E(z) with a minimal realiza-

tion

[
A B
C D

]
satisfies Assumption A1). Let M(z), N(z),

F, W and X be defined as in (2)-(6), respectively. Then
the state space realization for the synthesis filter R0(z) =
[E˜(z)E(z)]−1E˜(z) corresponding to the dual frame is given
by R0(z) = R0c(z) + R0ac(z), where R0c(z) and R0ac(z)
are respectively the causal stable and anti-causal stable part of
R0(z) given below

R0c(z) =[
A + BF (A + BF )Y (C + DF )∗ + BW−1D∗

F W−1D∗ + FY (C + DF )∗

]
(7)

R0ac(z) =[
(A + BF )∗ (C + DF )∗

W−1B∗ + FY (A + BF )∗ 0

]
ac

, (8)
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and Y is the solution of the following Lyapunov equation

Y − (A + BF )Y (A + BF )∗ = BW−1B∗. (9)

III. OPTIMAL DESIGN TO KNOWN NOISES

The blocking noise n(z) in Fig. 1 is assumed to be a
wide sense stationary (WSS) signal with the PSD Snn(z).
Recall that the power norm of n(z) is defined as ‖n‖P =√

1
2π

∫ 2π

0
Tr{Snn(ejω)}dω. Then the PSD of e(z) = X̂(z)−

X(z) is given by See(z) = R(z)Snn(z)R˜(z). The optimiza-
tion objective function is defined as the power norm of e(z)

J = ‖e‖P =

√
1
2π

∫ 2π

0

Tr{R(ejω)Snn(ejω)R∗(ejω)}dω.

For a given analysis FB with polyphase representation E(z)
satisfying PR condition, it is shown in [2] that the optimal
synthesis FB can be written as

R(z) = [E˜(z)S−1
nn (z)E(z)]−1E˜(z)S−1

nn (z).

However, even for the simplest case of white noise where
Snn(z) = I, no numerically efficient algorithms exist for
the general E(z) [1]. In this section, we provide the direct
state space computational formulae for the design of optimal
synthesis FB R(z).

Assume the state-space realization of E(z) and S
− 1

2
nn (z) are

given as follows

E(z) =
[

A B
C D

]
and S

− 1
2

nn (z) =
[

A2 B2

C2 D2

]
.

Then the state-space realization of E(z)S− 1
2

nn (z) is given by

E(z)S− 1
2

nn (z) =:
[

Ā B̄
C̄ D̄

]
=

⎡
⎣ A BC2

0 A2

BD2

D2

C2 DD2

⎤
⎦ .

(10)
Define F̄ = −W̄−1(B̄∗X̄Ā+ D̄∗C̄), where X̄ is the solution
of the following Riccati equation

Ā∗X̄Ā−X̄+C̄∗C̄−(Ā∗X̄B̄+C̄∗D̄)W̄−1(B̄∗X̄Ā+D̄∗C̄) = 0,

and W̄ = D̄∗D̄ + B̄∗X̄B̄. Let Ȳ be the solution of the
following Lyapunov equation

Ȳ − (Ā + B̄F̄ )Ȳ (Ā + B̄F̄ )∗ = B̄W̄−1B̄∗.

Theorem 2: Suppose that the state space model
E(z)S− 1

2
nn (z) is given by (10), and the Assumption A1)

is satisfied. Let W̄ , F̄ , Ȳ be defined as above. Then
the optimal synthesis FB minimizing J1 is given by
R(z) = Rc(z) + Rac(z), where

R0c(z) =[
Ā + B̄F̄ (Ā + B̄F̄ )Ȳ (C̄ + D̄F̄ )∗ + B̄W̄−1D̄∗

F̄ W̄−1D̄∗ + F̄ Ȳ (C̄ + D̄F̄ )∗

]

R0ac(z) =
[

(Ā + B̄F̄ )∗ (C̄ + D̄F̄ )∗

W̄−1B̄∗ + F̄ Ȳ (Ā + B̄F̄ )∗ 0

]
ac

.

Corollary 1: Given an analysis filter bank with polyphase
representation E(z) satisfying A1), assume the PSD matrix
of the noise n(z) is Snn(ejω) = S with S being a positive
definite constant matrix. Then the synthesis FB minimizing J1

is given by R(z) = Rc(z) + Rac(z), where

R0c(z) =[
A + BF (A + BF )Y (C + DF )∗ + BW−1D∗

F W−1D∗ + FY (C + DF )∗

]

R0ac(z) =
[

(A + BF )∗ (C + DF )∗

W−1B∗ + FY (A + BF )∗ 0

]
ac

.

IV. WORST-CASE DESIGN TO UNKNOWN NOISES

In some applications, it is not realistic to obtain the PSD
matrix of the noises. The method in previous section is
therefore not applicable. In this section, we present the worst-
case design method for oversampled PR FBs using frame
theory. It will be shown that the solution is simpler than
the well-known H∞ filtering design since causality is not
required. Surely causality is an important requirement for
implementation. But there are plenty of applications where
causality is not necessary, for instance, image processing or
block data processing [3], [8]. Besides, our results on non-
causal (but stable) FBs present a systematic interpretation of
the noise reduction from frame theory.

Assume that no information on the PSD of n(z) is available
except that its power norm is bounded. In such case, we try
to minimize the power induced norm

J2 = sup
||n||P

||e||P
||n||P = ‖R(z)‖∞ := sup

w∈[0,2π)

σ̄
(
R(ejω)

)
where σ̄ (·) denotes the largest singular value. Therefore the
optimization problem is to find R(z) from the set of all
synthesis filter banks (causal and/or noncausal) providing PR
such that ‖R(z)‖∞ is minimized. For more details about the
norms of random signals, please refer to [14]

Theorem 3: Suppose that E(z) with a minimal realization[
A B
C D

]
satisfies assumption A1). Let M(z), N(z), F,

W and X be defined as in (2)-(6), respectively. Then the
synthesis FB that minimizes J2 is given by R0(z) = R0c(z)+
R0ac(z), where R0c(z) and R0ac(z) are given by (7) and (8)
respectively.

Remarks on the proof. Due to space limitation, we can not
give the proof here. The main tool is the two block matrix
completion. Theorem 3 shows that the dual synthesis FB in
Theorem 1 is also optimal in the sense of worst case design (or
induced norm of power norm of signals). The result is simpler
than the well-known H∞ filtering [11], [12], [13] because of
non-causality is allowed in our setup.

V. NUMERICAL EXAMPLES

This section presents an example to illustrate our design
methods.

Consider an oversampled FB with IIR analysis filters
with N = 3 and M = 2, where H0(z), H1(z),H2(z)
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Fig. 2. Frequency responses of the analysis filters. H0(z): solid; H1(z):
dotted; H2(z): dashed

are low-pass, band-pass and high-pass butterworth filters
given respectively by H0(z) = 0.4046z+0.4046

z−0.1908 , H1(z) =
0.2836z2−0.2836

z2+0.4327 , and H2(z) = H0(−z). The frequency re-
sponses of H1(z), H2(z) and Hi(z) are shown in Fig. 2. Let

S =

⎡
⎣ 2 0.2 0.005

0.2 2 0.2
0.005 0.2 2

⎤
⎦ , the optimal synthesis filters

are given by

F0(z) =

(2.024z10 + 2.459z9 + 10.55z8 + 19.55z7

+44.96z6 + 37.11z5 + 8.977z4 + 11.51z3

+1.637z2 − 0.4691z − 0.0736)
z10 + 5.251z8 + 22.41z6 + 5.251z4 + z2

F1(z) =
0.7599z8 − 21.34z6 + 12.29z4 + 8.618z2 − 0.329

z9 + 5.251z7 + 22.41z5 + 5.251z3 + z
F2(z) = −F0(−z),

and the frequency responses are shown in Fig. 3. The synthesis
filters by worst case design in Theorem 3 are given by

F0(z) =

(1.038z10 + 1.115z9 + 4.625z8 + 8.863z7

+21.44z6 + 16.83z5 + 3.876z4 + 5.221z3

+0.8681z2 − 0.2127z − 0.0378)
z10 + 4.493z8 + 20.83z6 + 4.493z4 + z2

F1(z) =
0.3445z8 − 9.676z6 + 5.573z4 + 3.907z2 − 0.149

z9 + 4.493z7 + 20.83z5 + 4.493z3 + z
F2(z) = −F0(−z),

and the frequency responses are shown in Fig. 4.
As shown in the example, all the synthesis filters are easy

to obtain. The computation can be carried out easily using
MATLAB.

VI. CONCLUDING REMARKS

The noise reduction for PR oversampled FBs is studied
in this paper. For the noise with known PSD, the optimal
solution minimizing the power norm of the error is provided.
For the noise with unknown PSD, the worst case design
minimizing the induced power norm is given. For both cases,
explicit formulae involving only algebraic Riccati equation and
matrix manipulations are presented for the general (IIR or FIR)
oversampled PR FBs.
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Fig. 3. Frequency responses of the optimal synthesis filters for correlated
noise . F0(z): solid; F1(z): dotted; F2(z): dashed.
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Fig. 4. Frequency responses of the synthesis filters by worst case method.
F0(z): solid; F1(z): dotted; F2(z): dashed.
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