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ABSTRACT

A new design method for complex-valued two-channel FIR filter
banks with both orthogonality and symmetry properties is devel-
oped. Based on a novel linear matrix inequality (LMI) characteriza-
tion of trigonometric curves, the optimal design of the perfect recon-
struction filter bank is reformulated as a semi-definite programme.
The dimension of the resulting semi-definite programme is further
reduced by exploiting the strong convex duality. Consequently, the
globally optimal solution can be effectively found for any practical
filter length and desired regularity order.

1. INTRODUCTION

Orthogonal filter banks with symmetric FIR filters are of great in-
terest in certain applications of image and video processing. The
symmetry property of filters is important for effectively handling
boundary distortions of finite length signals [10]. On the other hand,
orthogonal filter banks preserve the energy of the input signal in
the subbands, which guarantees that errors arising from quantization
or transmission will not be amplified. Moreover, the orthogonality
property usually leads to high energy compaction [9]. However, the
real-valued two-channel filter banks with simultaneous orthogonal-
ity and symmetry do not exist except the trivial Haar filters with two
coefficients [7], [9]. In contrast, the nontrivial orthogonal and sym-
metric complex-valued filter banks do exist and they are capable of
providing even more potentially beneficial properties. They produce
orthogonal and symmetric complex wavelets, which can offer both
shift invariance and good directional selectivity, compared to shift
variance and poor directional selectivity of real-valued wavelets [5].
Furthermore, they can be applied to complex systems such as radar
signal, discrete multi-tone modulation (DMT) signal [3].

A known method for designing complex-valued filter banks is
based on the lattice structure. It requires solutions of highly non-
linear complex equations that are not practically solvable for large
length filters [3]. This paper proposes a new design method for
complex-valued two-channel FIR filter banks where both orthogo-
nality and symmetry properties are simultaneously prevailed. The
conditions for perfect reconstruction, symmetry and regularity are
completely characterized by linear matrix inequality constraints of
(convex) semi-definite programming (SDP). In other words, our de-
sign problem is effectively reformulated as a SDP. Furthermore, the
convex duality allows us to reduce it to yet another SDP but with
much smaller dimension. Subsequently, the globally optimal solu-

tion can be efficiently computed for, effectively, any filter length and
desired regularity order.

The organization of this paper is as follows. After the Introduc-
tion, Section 2 gives the optimization formulation for the filter bank
design. Its conversion to SDP for attractive computation is described
in Section 3, whose viability is confirmed by numerical examples in
Section 4. The conclusions are given in Section 5.

The notations of the paper are rather standard. In particular,
the notation X ≥ 0 denotes a (symmetric) positive semi-definite
matrix. It is a trivial fact that the dimension of the space of all N ×
N -symmetric matrices is N(N + 1)/2; the inner product 〈X, Y 〉
of the matrices X and Y is given by Trace(XY ), so 〈X, Y 〉 ≥ 0
for X ≥ 0, Y ≥ 0. For a given set C ⊂ �

N , its convex hull
(conic hull), denoted by conv(C) (cone(C)), is the smallest convex
set (cone) in �N that contains C. The polar set of C is the cone
C∗ = {x : 〈x, y〉 ≥ 0 ∀ y ∈ C} ⊂ �

N . It is straightforward to see
that C∗ = (conv(C))∗ = (cone(C))∗ and if C is a closed convex
cone then C = (C∗)∗. Further, the tilde accent on a function H(z)

is defined as H̃(z) = H∗(z−1), where asterisk subscript (∗) denotes
the conjugation of coefficients without conjugating z. e1 stands for
the unit vector e1 = (1 0 0 ... 0)T . With some abuse of notation, we
use G(ω) to refer to G(ejω) for short.

2. MATHEMATICAL MODEL OF ORTHOGONAL AND
SYMMETRIC FILTER BANKS

A two-channel maximally decimated uniform filter bank is illus-
trated by Fig. 1. An analysis filter bank with the lowpass filter
H0(z) and highpass filter H1(z) decomposes the input signal X(z)
into the subband signals X0(z) and X1(z). This is followed by a
synthesis filter bank with the lowpass filter F0(z) and highpass filter
F1(z), which reconstructs the output signal X̂(z) from the subband
signals. It is easily shown that the output X̂(z) of the two-channel
filter bank is given by

X̂(z) =
1

2
[F0(z)H0(z) + F1(z)H1(z)] X(z)

+
1

2
[F0(z)H0(−z) + F1(z)H1(−z)] X(−z).

If X̂(z) = cz−�X(z), the filter bank has perfect-reconstruction
property. The perfect reconstruction filter bank is designed by con-
structing the analysis and synthesis filters from the lowpass proto-
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Fig. 1. Maximally decimated two channel filter bank.

type filter H(z) according to

H0(z) = H(z), H1(z) = −z−NH̃(−z),

F0(z) = z−N H̃0(z), F1(z) = z−N H̃1(z).
(1)

The above choices of filters lead to the perfect filter bank with or-
thogonality if and only if the prototype filter satisfies the following
condition

H(z)H̃(z) + H(−z)H̃(−z) = 1 (2)

for some odd N (N = 2L + 1).
Next, from the relations (1), the symmetry of all filters is clearly

guaranteed by that imposed on the prototype filter H(z)

hk = hN−k, k = 0, 1, ..., N (3)

for the complex-valued coefficients h = (h0, h1, ..., hN )T of H(z).
In short, the problem of designing an orthogonal and symmetric

filter bank is down to designing a prototype filter H(z) satisfying the
orthogonality condition (2) and the symmetry condition (3), where
the former is highly nonlinear and the later is linear constraints in
the filter coefficients h.

Introduce the product filter

G(z) = H(z)H̃(z) =
N�

k=−N

ḡkz−k (4)

which is a positive real filter with symmetric coefficients ḡk = ḡ−k.
For simplicity of presentation, we define

g = (g0, g1, ..., gN )T = (ḡ0, 2ḡ1, ..., 2ḡN )T ∈ �N+1.

Then, in term of the product filter G(z), the condition (2) is just the
following linear constraints in the coefficients g

g2k =
1

2
δ(k), k = 0, 1, ..., L. (5)

It can be compactly written as

Ag = b (6)

where

A(i, j) = δ(2i − j), i = 0, 1, ..., L, j = 0, 1, ..., N,
b = (1, 0, ..., 0)T ∈ �L+1.

However, not any positive real filter G(z) can be factorized in form
(4) with H(z) satisfying the symmetry condition (3). In fact, in view
of (3) and (4), G(z) must have the following specific form

G(ω) =
N�

k=0

gk cos(kω) =

�����
L�

k=0

hk

�
e−jkω + e−j(N−k)ω

������
2

,

(7)

for some (h0, ..., hL) ∈ �L+1.
In addition, in certain applications, the regularity of lowpass fil-

ters is required. The filter H(z) is said to be p-regular if it has p
multiple zeros at z = −1, or equivalently G(ω) has 2p multiple ze-
ros at ω = π, which are linear constraints in the filter coefficients
g:

N�
k=0

ki(−1)kgk = 0 i = 0, 2, 4, ..., 2p − 2, (8)

or equivalently,

c(i)T g = 0, i = 0, 1, ..., p − 1 (9)

with c(i) ∈ �N+1, c(i)(k) = k2i(−1)k, k = 0, 1, ..., N .
Finally, the following standard constrained specifications on the

product filter G(z) are imposed to get the smooth frequency selec-
tivities on given stopband [0, ωp] and passband [ωs, π] with ωp =
(1 − ε)π

2
, ωs = (1 + ε)π

2
, where ε is a positive constant depending

on the required transition width:

• The objective function is to minimize the square error

E(g) =

� ωp

0

|G(ω) − 1|2dω +

� π

ωs

|G(ω)|2dω

= gT Qg + qT g + r

(10)

where Q =

� ωp

0

TN (ω)dω +

� π

ωs

TN (ω)dω,

q = −2

� ωp

0

ϕN (ω)dω, r = ωp.

• The peak-error constraints

1 − δ ≤ G(ω) ≤ 1, ∀ ω ∈ [0, ωp]

0 ≤ G(ω) ≤ δ, ∀ ω ∈ [ωs, π]
(11)

are fully satisfied.

In summary, designing the two-channel filter bank with orthog-
onality, symmetry and regularity properties is equivalent to minimiz-
ing the convex quadratic objective function (10) subject to the linear
constraints (6), (9), the nonlinear constraint (7), and the semi-infinite
linear constraints (11) in the variable g:

min
g

E(g) s.t. (6), (7), (9), (11). (12)

The next section is devoted to reducing the nonlinear constraint (7)
and semi-infinite constraints into LMIs so our filter bank design is
in fact formulated as a SDP. Furthermore, the convex duality is em-
ployed to reduce the dimension of this SDP for practically efficient
computation.

3. CONVERSION TO SEMI-DEFINITE PROGRAMMING

The constraint (7) is highly non-linear relationship between the prod-
uct filter coefficients g and the symmetric complex prototype filter
coefficients h. It can be seen that if h in (7) is restricted real only
then the set of all g ∈ RN+1 satisfying (7) is nonconvex and thus
there is no way to express (7) as a LMI constraint. Interestingly
enough, the situation is gradually changed when h ∈ �L+1: the set
of all such g will be convex and described by LMI constraints as we
show right now.
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With the introduced function

ϕN (ω) = (1, cos(ω), cos(2ω), ..., cos(Nω))T , ω ∈ [0, π],

the N−th order trigonometric moment matrix TL(ω) is defined as
[8]

TN (ω) = ϕN (ω)ϕT
N (ω). (13)

The matrix TN (y) depending on y = (y0, y1..., y2N )T results from
TN (ω) through the variable change

cos kω → yk, k = 0, 1, ..., 2N, (14)

so

TN (y) =

�
���

y0 y1 . . . yN

y1
y2+y0

2
. . .

yN+1+yN−1
2

. . . . . . . . . . . .

yN
yN+1+yN−1

2
. . . y2N+y0

2

�
���

and TN (ω) = TN (ϕN (ω)).
Furthermore, we also define T�N (ω) = cos �ωTN (ω) and accord-
ingly, T�N (y) is derived from T�N (ω) by variable change (14) which
results in T�N (ω) = T�N (φN (ω)).

The following theorem shows that the nonlinear constraint (7) is
indeed recast as a LMI.

Theorem 1 The set

C =
�

g ∈ �N+1 : ∃ h = hR + jhI ∈ �L+1s.t. (7)
�

(15)

is convex as it can be expressed by the LMI constraint

C =
�

g ∈ �N+1 : G(ω) ≡ 〈X, TL(ω) + T1L(ω)〉

for some X ≥ 0
�

.
(16)

The polar cone C∗ is also expressed by a LMI constraint

C∗ =
�

y ∈ �N+1 : TL(y) + T1L(y) ≥ 0
�

. (17)

It should be clarified that by comparing gi with the coefficient of
the same ”power” cos(iω) in 〈X, TL(ω)+T1L(ω)〉, linear relations
between g and X in (16) are easily established and they together with
the constraint X ≥ 0 constitute the LMI constraint for describing C
defined by (16).

Next, to handle the semi-infinite trigonometric constraints (11)
we simply use the result of [8]. A trigonometric curve Ca,b is defined
as

Ca,b =
�

ϕN (ω) : cosω ∈
�
cosa, cosb

	�
⊂ �

N+1, (18)

with its polar

C∗
a,b =

�
u ∈ �N+1 : 〈u, v〉 ≥ 0 ∀v ∈ Ca,b

�
. (19)

Theorem 2 [8] Define the following LMI constraint in the variables
y = (y0, y1, ..., yN ) ∈ �N+1

cos bTL(y) ≥ T1L(y) ≥ cos aTL(y) for N = 2L + 1. (20)

Then, the convex hull of the trigonometric curve Ca,b defined by (18)
is fully characterized by LMI constraints

conv(Ca,b) = {(y0, y1, y2, ..., yN ) : (20), y0 = 1}. (21)

Consequently, the conic hull of convCa,b is defined by

cone(Ca,b) = {(y0, y1, y2, ..., yN ) : (20)}).

Thus, the semi-infinite trigonometric constraints (11) are described
by the following LMI constraints

βig + di ∈ C∗
i , i = 1, 2, 3, 4 (22)

where

C∗
1 = C∗

2 = C∗
ωp,0, C∗

3 = C∗
4 = C∗

π,ωs
,

β1 = β3 = 1, β2 = β4 = −1,

d1 = (−1 + δ)e1, d2 = e1, d3 = 0, d4 = δe1.

Summing up, the optimization problem (12) is reformulated as the
following

min
g

gT Qg + qT g s.t. (6), (9), (16), (22) (23)

which is a SDP because (6), (9) are linear constraints, and (16), (22)
are LMIs. It should be noted that (22) is four LMI constraints involv-
ing 8 positive semi-definite matrix additional variables of dimension
(L + 1) × (L + 1) (see [8] for more details on equivalent LMI
constraints for the set C∗

a,b defined by (19)) and (16) is also a LMI
involving one symmetric positive semi-definite matrix variable X of
dimension (L + 1)× (L + 1). Thus the total number of scalar vari-
ables for SDP (23) is 2L + 1 + 9(L + 1)(L + 2)/2, which may be
too high for large L.

Like [8], we can reduce the variable dimension for the SDP (23)
through the convex duality. Using the Lagrange multiplier method,
the optimization problem (23) can be rewritten as the following SDP

max
λ,αi,y(i),η

−bT λ −
4


i=0

dT
i y(i) − η (24)

subject to�
��

η ∗

q + AT λ +

p−1

i=0

αic
(i) −

4

i=0

βiy
(i) 4Q

�
�� ≥ 0,

TL(y(0)) + T1L(y(0)) ≥ 0,

TL(y(i)) ≥ T1L(y(i)) ≥ cos(ωp)TL(y(i)) i = 1, 2,

cos(ωs)TL(y(i)) ≥ T1L(y(i)) ≥ −TL(y(i)) i = 3, 4,

where β0 = 1 and d0 = 0.
Note that in contrast to the primal optimization problem (23), the
SDP (24) involves 5 variables y(i) of dimension 2L + 2, one vari-
able λ of dimension L + 1 and p other scalar variables (αi and η) so
the dimension of its variable is not an issue in computational imple-
mentation even for large L of the thousand magnitude.

Once the optimal solutions y
(i)
∗ , αi∗ and λ∗ of the dual problem

(24) have been found, the optimal solution g∗ of the primal (23) is
retrieved by the following equation:

g∗ = −1

2
Q−1

�
q + AT λ∗ +

p−1

i=0

αi∗c
(i) −

4

i=0

βiy
(i)
∗

�
. (25)

Finally, the optimal prototype filter H(z) satisfying (7) is easily re-
covered from the optimal product filter G(z) by the spectral factor-
ization (see [2, 10]).
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4. DESIGN EXAMPLES

Example 1: A symmetric orthogonal complex-valued two channel
filter bank is designed using the above method. The lowpass proto-
type filter H(z) has specifications: filter order N = 11, passband
edge frequency ωp = 0.3π, stopband edge frequency ωs = 0.7π,
and stopband attenuation δ = −25dB. The lowpass filter of reg-
ularity order p=1, 3 is considered. The magnitude responses of the
filter bank and accordingly generated scaling functions and wavelets
are shown in Fig. 2. The wavelet and scaling functions are observed
smoother as the regularity order increases.
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Fig. 2. (a), (c) normalized frequency responses of the filter bank with
N=11. (b), (d) the solid line shows the real part, and the dashed line
shows the imaginary part of scaling functions and wavelets.

Example 2: In order to show the efficiency and flexibility of the
above algorithm, another filter bank with longer filter length is de-
signed. The lowpass prototype filter has N = 63, ωp = 0.44π,
ωs = 0.56π, δ = −50dB, and p=1,3. The outcome is again the
magnitude responses of the filter bank and accordingly generated
scaling functions and wavelets illustrated by Fig. 3.

5. CONCLUDING REMARKS

In this paper, a novel method for designing a symmetric orthogonal
complex valued filter banks is presented. The key contribution is
to show that the optimal design of this class of complex filter bank
can be globally solved by a SDP of moderate size. Design examples
show that the proposed method is really effective.
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