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Abstract— In this paper, we present an explicit and numer-
ically efficient formulae to construct a tight (paraunitary) FB
frame from a given un-tight (non-paraunitary) FB frame. The
derivation uses the well developed techniques from modern
control theory, which results in the unified formulae for generic
IIR and FIR FBs. These formulae involve only algebraic
matrix manipulations and can be computed efficiently and
reliably without the approximation required in the existing
literature.

I. INTRODUCTION

A great deal of research has been devoted to the analysis and
design of oversampled FBs with the advantages of increased
design freedom, enhanced noise reduction, and improved ca-
pacity for signal and information representation [1]-[6]. In [1]-
[3],[8], an elegant frame-theoretic approach is presented for the
analysis and design of general oversampled FBs. Paraunitary
FBs are more preferable in practice since the corresponding
synthesis FBs are very easy to compute. Generally speaking,
given an arbitrary analysis FB with polyphase representa-
tion E(z), the canonical paraunitary FB can be obtained by
E(z)(Ẽ(z)E(z))−

1
2 [1]. However, the above formula involves

factorization and inversion of transfer matrices, for which there
is a lack of efficient algorithms. Therefore, an approximation
method is suggested in [1]. For paraunitary FIR FBs (or tight
frames of finite dimensional spaces), various methods were
proposed in [3], [9], [6].

In this paper, we will present explicit and numerically
efficient formulae for constructing a tight (paraunitary) FB
frame from an arbitrary un-tight (non-paraunitary) FB frame.
The results provide directly computable formulation with the
effort not exceeding algebraic matrix manipulations and not
involving any approximation required in the existing literature,
and hence resolve completely the problems discussed in the
above. These new results are derived by the well-developed
techniques in modern control theory [10].

II. PRELIMINARIES

This sections reviews some preliminaries, in particular, the
concepts of transfer matrices, state space realization, frames
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of China under grant 60304011.

and oversampled filter banks. Please refer [1], [2], [10], [11]
for more details.

The notation is standard. The real and complex numbers are
denoted by R and C respectively. The set of n-dimensional
real (complex) vectors is denoted by R

n(Cn). R
m×n(Cm×n)

denotes the m × n real (complex) matrix set. For a matrix
A ∈ C

m×n, A∗ denotes its conjugate transpose.

A. Transfer matrices, state space descriptions and inner-outer
factorization

Definition 1: For any rational transfer matrix E(z) ∈
C

N×M , if the matrices A ∈ R
n×n, B ∈ R

n×M , C ∈ R
N×n

and D ∈ R
N×M are such that E(z) = D + C(zI −

A)−1B, then (A,B, C, D) is called a state space realization

of E(z) and denoted as E(z) =
[

A B
C D

]
. The realization[

A B
C D

]
is minimal if the dimension of A is minimal.

For any transfer matrix E(z), define Ẽ(z) = E∗(z−1). A
rational transfer matrix N(z) is called inner if N(z) is causal
stable satisfying Ñ(z)N(z) = I for all z = ejθ, θ ∈ [0, 2π).
Note that in such case N˜(z) is anti-causal and stable. Note
also that the inner condition implies the paraunitary condition
[1], [2].

The following lemma is a standard result from robust control
theory, see eg Chapter 21 in [10].

Lemma 1: For E(z) ∈ C
N×M with a minimal causal

realization

[
A B
C D

]
, assume that

[
A − ejθI B

C D

]
has

full column rank for all θ ∈ [0, 2π) and D has full column
rank. Then E(z) can be factorized in the following form

E(z) = N(z)M(z)−1 (1)

where M(z) and N(z) are rational transfer matrices with
N(z) inner, and

[
M(z)
N(z)

]
:=

⎡
⎣ A + BF BW− 1

2

F
C + DF

W− 1
2

DW− 1
2

⎤
⎦ (2)

W = W ∗ = D∗D + B∗XB (3)

F = −W−1(B∗XA + D∗C) (4)

and X = X∗ ≥ 0 is the unique stabilizing solution to

A∗XA−X+C∗C−(A∗XB+C∗D)W−1(B∗XA+D∗C) = 0.
(5)
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HN−1(z) � vN−1[m]↓ M � ↑ M � FN−1(z) � ���̂x(k)

Fig. 1 Oversampled filter bank with N ≥ M .

B. Filter banks, polyphase representation and frame theory

Consider an N -channel oversampled filter bank with deci-
mation factor M as shown in Fig. 1. Assume that the analysis
and synthesis filters, denoted respectively by Hk(z) and Fk(z),
k = 0, . . . N −1, are all linear and BIBO stable, and have the
following form

Hk(z) =
∞∑

n=−∞
hk[n]z−n and Fk(z) =

∞∑
n=−∞

fk[n]z−n,

where hk[n] and fk[n] are impulse response coefficients of
Hk(z) and Fk(z), respectively. Note that Hk(z) is called FIR
if there exists a finite number K such that hk[n] = 0 for all
|n| ≥ K, and called IIR otherwise.

Denote E(z) and R(z) the polyphase matrix of the analysis
filters {Hk(z)} and the synthesis filters {Fk(z)} , respectively,
where Eij(z) =

∑∞
n=−∞ hi[nN − j]z−n, and Rji(z) =∑∞

n=−∞ fi[nN − j]z−n, for i = 0, . . . , N − 1 and j =
0, . . . ,M − 1.

Definition 2: A sequence {ϕk[n]}∞k=−∞ in a Hilbert space
�2(R) is a frame if there exist constants α, β > 0 such that

α||x||2 ≤
∞∑

k=−∞
| < x, ϕk > |2 ≤ β||x||2 (6)

for any x ∈ �2(R), where < x, ϕk > denotes the inner product
of x[n] and ϕk[n]. α and β are called the frame bounds of
{ϕk[n]}∞k=−∞.

Definition 3: A frame {ϕk[n]}∞k=−∞ is tight if

∞∑
k=−∞

| < x, ϕk > |2 = α||x||2 (7)

for any x ∈ �2(R).
If an FB satisfies PR with zero delay, then x̂[n] = x[n]. For

such FB, define

hk,m[n] := hk[mM − n] and fk,m[n] := fk[n − mM ]

with k = 0, 1, . . . , N − 1,−∞ < m < ∞. Then we have

x[n] = x̂[n] =
N−1∑
k=0

∞∑
m=−∞

< x, hk,m > fk,m[n]. (8)

In the language of frame theory, (8) corresponds to an expan-
sion of the input signal into fk,m[n] [1], [2]. It is well-known
that {hk,m} is a frame if and only if PR is achieved for any

x ∈ �2(R). So the PR condition indicates the invertibility of
the analysis operator in a given set. For more details, please
refer to [1], [2]. For an analysis (synthesis) FB, we will use
alternatively its transfer function Hk(z) (Fk(z)), its polyphase
matrix E(z) (R(z)) and its frame {hk,m} ({fk,m}) to refer to
the FB.

For an analysis filter bank with polyphase matrix E(z),
recall the following results from [1], [2]

Lemma 2: {Hk(z)} implements a frame expansion if and
only if its polyphase matrix E(z) is of full column rank on
the unit circle.

Lemma 3: An FB implements a tight frame expansion if
and only if its polyphase matrix E(z) is paraunitary, that is,
E(z)˜E(z) = cI.

Corollary 1: Let E(z) =
[

A B
C D

]
be the polyphase

matrix of an FB {Hk(z)}. Then {Hk(z)} implements a frame

expansion if and only if

[
A − ejθI B

C D

]
has full column

rank for any θ ∈ [0, 2π).
Proof: It follows from Lemma 2 that {Hk(z)} imple-

ments a frame expansion if and only if E(ejθ) is of full column
rank for any θ ∈ [0, 2π). On the other hand, we have the
following equation[

A − ejθIn B
C D

] [
(A − ejθIn)−1 −(A − ejθIn)−1B

0 IM

]

=
[

In 0
C(A − ejθIn)−1 E(ejθ)

]
.

Therefore, the column rank of

[
A − ejθI B

C D

]
is equal to

the column rank of E(ejθ) plus n. This completes the proof.

III. CONSTRUCTION OF THE TIGHT FRAME FROM AN

UN-TIGHT FRAME

This section provides a direct and simple method to con-
struct a paraunitary FB from any given FB. This problem is
also addressed in [1], [9]. However, the method in [1] involves
spectral factorization and direct inverse of transfer matrix,
which generally does not have a closed form solution and
needs the approximation approach. In [9], the discussion is
restricted to finite dimensional space.

Theorem 1: Given a stable analysis set {hk,m[n]}, let
E(z) be its polyphase matrix with a minimal realization[

A B
C D

]
. Assume that

[
A − ejθI B

C D

]
has full column

rank for all θ ∈ [0, 2π), and D has full column rank. Let
M(z), N(z), Z, F, W and X be defined as in (1)-(5) of
Lemma 1, respectively. Then
1) The frame {hk,m[n]} is a tight frame with bound α if and
only if W = αI and D∗C + B∗XA = 0.
2) If {hk,m[n]} is not tight, then the frame with polyphase
representation Et(z) = N(z) is tight with frame bound
α = β = 1, where N(z) is the inner part of E(z) as given in
Lemma 1.
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Proof: 1) It is shown in [1] that {hk,m[n]} is tight if
and only if E˜(z)E(z) = αI. The result then follows directly
from Lemma 21.18 (page 552 in [10]) that E˜(z)E(z) = αI
is equivalent to W = αI and D∗C + B∗XA = 0.
2) By Lemma 1, E(z) can be factorized as E(z) =
N(z)M−1(z) with N(z) being inner, i.e. N(z)˜N(z) = I.
Thus the frame Et(z) = N(z) is a tight frame with frame
bound equal to 1.

Remark 1: Theorem 1 shows that the solutions to alge-
braic Riccati equations and algebraic matrix manipulations
are enough for computing the paraunitary FB, therefore the
factorization and approximation in [1] are completely avoided.
The solution of the algebraic Riccati equation (5) can be
computed efficiently and reliably using software, for example,
MATLAB. See MATLAB functions ‘dric’ for detail.

Remark 2: For any FB frame {hk,m[n]}, we can always
find an E(z) with feedthrough term D full column rank
by allowing PR with some delay. Note that PR is always
achievable for FB frame.

IV. STATE SPACE COMPUTATION

This section discusses the complete computation procedure
for using Theorem 1. In other words, given the analysis filters
H0(z),H1(z), . . . , HN−1(z), and the decimation ratio M with
M ≤ N , the procedure to obtain a paraunitary FB from non-
paraunitary Hi(z)s will be presented in detail. Note that some
steps are similar to the results in [12].

First, denote

H(z) =
[

H0(z) · · · HN−1(z)
]T

(9)

and represent H(z) in a causal (not necessarily stable) minimal
state space realization

H(z) =
[

AH BH

CH DH

]
. (10)

The transfer matrix associated with its polyphase representa-
tion is then given by

E(z) =
[

A B
C D

]

=
[

AM
H AHBH A2

HBH · · · AM
H BH

CH DH CHBH · · · CHAM−2
H BH

]
. (11)

The MATLAB function ‘dare’ can be used to compute X, F
and W in equation (3)-(5). The X, F and W thus computed
can be used to obtain the state-space realization of N(z) and
M(z) using the equation (2). By Theorem 1, the frame bounds
as well as the state-space realization of N(z) can be computed
directly.

Algorithm 1 (Construction of the tight frame)
Step 1) Form the transfer matrix model of H(z) as in (9)

and obtain its state-space model using the MATLAB function
‘tf2ss’.

Step 2) Obtain the state-space model of E(z) using (11).
Step 3) Compute X, F and W in equation (3)-(5) for E(z)

and obtain the state-space realization of N(z) and M(z) using
the equation (2).

Step 4) Obtain the filters Ht(z) according to the polyphase
representation of N(z). Then Ht(z) is a paraunitary filter bank
corresponding to a tight frame.

Remark 3: To maintain the numerical robustness of the
above algorithms, the minimal realization of the state-space
model and transfer matrix model is required in model con-
version. This can be easily carried out using the MATLAB
function ‘minreal’.

V. NUMERICAL EXAMPLES

This section presents some numerical examples to show the
effectiveness and reliability of Algorithm 1.

Example 1 (Oversampled FB with IIR analysis filters)
Consider the filter bank shown in Fig.1 with N = 3 and
M = 2, where H0(z),H1(z),H2(z) are low-pass, band-
pass and high-pass butterworth filters given respectively by
H0(z) = 0.4208z+0.4208

z−0.1584 , H1(z) = 0.2452z2−0.2452
z2+0.5095 , and

H2(z) = H0(−z). The frequency responses of H1(z), H2(z)
and Hi(z) are shown in Fig. 1. After Steps 1)-2), we have

E(z) =

⎡
⎣

0.4208z+0.06665
z−0.02509

0.4875z
z−0.02509

0.2452z−0.2452
z+0.5095 0

0.4208z+0.06665
z−0.02509

−0.4875z
z−0.02509

⎤
⎦ ,

the frame bounds are α = 0.6, and β = 1.13. Obviously,
the analysis filter bank is not paraunitary. Using Step 3) of
Algorithm 1, we get

N(z) =

⎡
⎢⎣

0.5533z2+0.3696z+0.04465
z2+0.3162z+0.0520 0.7071

0.3225z2−0.3305z+0.0081
z2+0.3162z+0.0520 0

0.5533z2+0.3696z+0.04465
z2+0.3162z+0.0520 −0.7071

⎤
⎥⎦

and the corresponding paraunitary filters

Ht0(z) =

(0.5533z5 + 0.7071z4 + 0.3696z3

+0.2236z2 + 0.04465z + 0.0368)
z5 + 0.3162z3 + 0.0520z

Ht1(z) =
0.3225z4 − 0.3305z2 + 0.0081

z4 + 0.3162z2 + 0.0520

Ht2(z) =

(0.5533z5 − 0.7071z4 + 0.3696z3

−0.2236z2 + 0.04465z − 0.0368)
z5 + 0.3162z3 + 0.0520z

.

The frequency response of Ht0(z), Ht1(z) and Ht2(z) are
shown in Fig. 2

Example 2 (Oversampled FB with FIR analysis filters)
Consider the oversampled FB shown in Fig.1 with N = 3 and
M = 2, where H0(z),H1(z) and H2(z) are the following
Parks-McClellan optimal equiripple FIR filters

H0(z) = 0.239 + 0.6655z−1 + 0.6655z−2 + 0.239z−3

H1(z) = −0.5189z−1 + 0.6793z−3 − 0.5189z−5

H2(z) = H0(−z).

The frequency response of H0(z),H1(z) and H2(z) are shown
in Fig. 3. The frame bounds calculated with algorithm 1 are
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Fig. 1. Example 1: Frequency responses of the analysis filters. H0(z): solid;
H1(z): dotted; H2(z): dashed
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Fig. 2. Example 1: Frequency responses of the paraunitary filters. Ht0(z):
solid; Ht1(z): dotted; Ht2(z): dashed.

α = 0.6032 and β = 1.82. Thus Hi(z) are not a tight frame.
Using Algorithm 1, we get

N(z) =

⎡
⎢⎣

0.2539z+0.7071
z+0.3591

0.4826z2+0.1733z
z2−0.1782z+0.1416

0 −0.3763z2+0.4926z−0.3763
z2−0.1782z+0.1416

0.2539z+0.7071
z+0.3591

−0.4826z2−0.1733z
z2−0.1782z+0.1416

⎤
⎥⎦ ,

and the paraunitary filter banks corresponding to a tight frame
are as follows

Ht0(z) =

0.2539z6 + 0.4826z5 + 0.6618z4 + 0.3466z3

+0.0901z2 + 0.06225z + 0.1001
z6 + 0.1809z4 + 0.0776z2 + 0.05086

Ht1(z) =
−0.3763z4 + 0.4926z2 − 0.3763

z5 − 0.1782z3 + 0.1416z
Ht2(z) = Ht0(−z).

The frequency response of Ht0(z),Ht1(z) and Ht2(z) are
shown in Fig. 4.

As shown in these examples, no matter what type of analysis
FB is given, the frame bounds and tight frames of the given
analysis FB can be easily calculated using the procedure given
in Algorithms 1 without approximation.

VI. CONCLUSION

This paper has provided explicit and numerically efficient
formulae to obtain the tight oversampled FB frame from an
arbitrary oversampled FB (IIR or FIR) frame. These formulae
do not involve any approximation. The results provide a
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Fig. 3. Example 2: Frequency responses of the analysis filters. H0(z): solid;
H1(z): dotted; H2(z): dashed
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Fig. 4. Example 2: Frequency responses of the paraunitary filters. Ht0(z):
solid; Ht1(z): dotted; Ht2(z): dashed

unified framework for the construction of tight frame generated
by oversampled FBs (IIR and FIR).
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