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Abstract— A simple yet versatile technique [1] was recently
introduced for designing FIR orthonormal wavelet filters. The
technique involves pinning some of the zeros of the Parametric
Bernstein Polynomial to ensure non-negativity of the frequency
response. Filters with a high number of vanishing moments and
sharper frequency response (but lower vanishing moments) than
the maximally flat Daubechies filters can be easily designed. The
position of the pinned zeros can be easily adjusted to give a
variety of frequency response. This paper extends the previous
work and presents a method to determine the zeros’ position that
will give a least squares error in the stopband response.

I. INTRODUCTION

Orthonormal wavelets are constructed from an appropriately
designed conjugate quadrature filter (CQF). The CQF H(z)
is obtained from a spectral factorization of a product filter
P (z), ie. H(z)H(z−1) = P (z). The product filter must satisfy
the following halfband constraint: P (z) + P (−z) = 1 and
non-negativity constraint: P (ejω) ≥ 0. The orthonormal
wavelet ψ(t) (spectrum Ψ(ω)) is generated from the filter
H(z) and is given by the infinite product formula: Ψ(ω) =
1
2 H1

(
ej ω/2

) ∏∞
k=1

{
1
2 H

(
ej ω/2k+1

)}
where H1(z) =

z−1H(−z−1). To ensure convergence, zeros at z = −1 are
imposed on H(z) and this is also known as the vanishing
moment (VM) condition [2]. Generally, the higher the number
of VM, the higher the smoothness (in terms of the order of
differentiability) [2].

The celebrated wavelets of Daubechies [2] are obtained by
imposing a maximum number of VM on H(z) (or equivalently
P (z)). This gave a maximally flat frequency response but
slow transition band roll-off. Sharper roll-off filters require
ripples in the stopband (and/or passband). The opposite to
the maximally flat response is the equiripple response. The
equiripple CQF of Smith and Barnwell [3] does not have any
VM; hence cannot produce wavelets. Rioul and Duhamel [4]
proposed a Remez exchange algorithm to design equiripple
CQF filters with prescribed VM and to satisfy the non-
negativity constraint. A simple alternative to the Remez based
algorithm was recently proposed in [1] based on the concept of
zero-pinning the Bernstein Polynomial. This technique ensured
that the non-negativity constraint and the VM condition are
satisfied simultaneously.

The zero-pinning technique requires the specification of
the zeros’ position. Once this is done it is then a simple
matter of solving linear equations to complete the design
of the product filter. Heuristic strategies for determining the

positions were presented in [1]. In this paper we present a
more objective approach to determining the zeros’ position. A
least squares formulation is adopted and the derivation of the
design equations together with examples will be presented.

II. ZERO-PINNING TECHNIQUE

We very briefly describe the zero-pinning technique and the
Parametric Bernstein Polynomial (PBP) and refer the reader to
[1] for more details. The PBP was first introduced by Caglar
and Akansu [5] and is given by:

BN (x; α) ≡
N∑

i=0

f(i)
(

N
i

)
xi(1 − x)N−i (1)

where N is odd, α = [ α0 . . . α(N−1)/2 ]T and

f(i) ≡
{

1 − αi 0 ≤ i ≤ 1
2 (N − 1)

αN−i
1
2 (N + 1) ≤ i ≤ N

(2)

The PBP can also be expressed as:

B(x) = K(x) −
(N−1)/2∑
l=L+1

kl(x) αl (3)

where

K(x) ≡
(N−1)/2∑

i=0

(
N
i

)
xi(1 − x)N−i

kl(x) ≡
(

N
l

)
[xl(1 − x)N−l − xN−l(1 − x)l].

The polynomial satisfies the halfband condition: B(x)+B(1−
x) = 1. The product filter P (z) of the CQF can be obtained
by: P (z) = B(− 1

4z(1− z−1)2). The desired number of zeros
at z = −1 of P (z) can be imposed by setting an appropriate
number of Bernstein parameters to zero. Specifically setting
αi = 0 for i = 0, . . . , L will give 2(L+1) zeros; hence (L+1)
zeros for the CQF H(z).

The halfband and VM conditions are structurally imposed
and this is the appeal of the PBP for wavelet filter design.
However, there is still the non-negative condition that needs
to be satisfied before the PBP can be used for orthogonal
filter design, ie. B(x) ≥ 0 for 0 ≤ x ≤ 1. This is where
the zero-pinning technique comes into the picture and it
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basically amounts to explicitly pinning the ”down ripples”
(local minima) to the zero-axis:

B(xi) = K(xi) −
(N−1)/2∑
l=L+1

kl(xi) αl = 0 (4)

B′(xi) = K ′(xi) −
(N−1)/2∑
l=L+1

k′
l(xi) αl = 0 (5)

where x1, x2, . . . , xP are the zero locations for pinning. The
xi’s are all in the stopband, ie. 1/2 < xi < 1. Each xi

contributes two linear equations in the non-zero parameters
αl’s. The value L should be chosen such that there is an even
number of non-zero αl’s, ie. (N −1)/2−L must be even. The
number of pinned zeros are then P = 1

2 ((N−1)/2−L). There
will be 2P linear equations with 2P unknowns which can be
solved easily to give the αl for l = (L + 1), . . . , (N − 1)/2.

Non-negativity of polynomial

The fact that the pinned zeros are local minima, thus en-
suring non-negativity can be argued as follows. The halfband
condition implies that B ′(x) = B′(1 − x), ie. the derivative
is symmetric about x = 1/2. Using the fact that (i) B(x) has
a (1 − x)L+1 factor; and (ii) derivative symmetry, it can be
easily shown that

B′(x) = xL(1 − x)LQ(x)

where Q(x) is a degree (N − 1− 2L) polynomial. The zeros
of Q(x) are the location of the local optima (minima and
maxima). Between any (i) two adjacent pinned zeros; or (ii)
the last pinned zero and x = 1, there must be (at least) one
local optimum. Therefore there are (at least) the same number
of un-pinned optima as there are pinned optima. Half of the
optima are in the passband (0 < x < 1/2) and half are in the
stopband (1/2 < x < 1) due to symmetry. Adding all up gives
exactly 4P = (N − 1 − 2L) optima which is the same as the
degree of Q(x), ie. all optima are accounted for. Now if the
first pinned zero x1 is a local maxima (instead of minima),
there must be (at least) one local minima between x = 1/2
(noting that B(1/2) = 1/2) and x = x1 but this is a violation
since all optima have been accounted for. Continuing with a
similar argument to other pinned zeros will show that the zeros
must be local minima.

In essence, by using all the degrees of freedom (in the non-
zero Bernstein parameters) to pin the zeros to the horizontal
axis, non-negative local minima are created thus ensuring non-
negativity of the polynomial. More details about the technique
including the motivation for its development are found in [1].

III. LEAST SQUARES DESIGN

Equations (4) and (5) implicitly define the α values in
terms of the zeros xi, ie. we have the following functional
relationship:

αl = αl(x1, x2, . . . , xP ) (6)

for l = (L + 1), . . . , (N − 1)/2. Consider the following
objective function: ẼS ≡ ∫ π

ωs
|H(ejω)|2 dω where ωs is the

stopband edge and π/2 < ωs < π. Now ẼS is a measure
of the CQF’s stopband energy and it can also be expressed
in terms of the PBP as follows: ẼS =

∫ π

ωs
B(sin2(ω/2)) dω

since P (z) = H(z)H(z−1) = B(− 1
4z(1− z−1)2). Instead of

using ẼS which involves integrating trigonometric functions,
we consider a related objective function given by

ES ≡
∫ 1

xS

B(x) dx (7)

where xS = sin2(ωs/2). ES is simpler to compute than ẼS as
the integrand in ES is easily obtained whereas the integrand
in ẼS needs to be manipulated using trigonometric identities
before integration can be performed. Using ES is equivalent
to using the weighting function W (ω) = 1

2 sin ω (as dx =
1
2 sinω dω). This will give small weight values to frequencies
in the vicinity of ω = π. However this will not be significant
as the attenuation of H(ejω) will be high in that vicinity due
to the structurally imposed zeros at z = −1. If desired, a
polynomial weighting function W (x) that approximates the
inverse weighting, ie. W (x) ≈ (x(1 − x))−1/2 (using a
Taylor Series expansion), can be applied to (7). The use of a
polynomial function W (x) will ensure that the integration in
(7) can be performed analytically as the integrand B(x)W (x)
is a polynomial.

Using (3) in (7) we have:

ES = a0 +
2P∑
l=1

al αL+l (8)

where the constants a0, a1, . . . , a2P are given by: a0 ≡∫ 1

xS
K(x) dx and al ≡

∫ 1

xS
kl(x) dx for l = 1, . . . , 2P . Since

the αl’s are functionally dependent on the zeros x i as shown
in (6), ES will also have the same functional dependence, ie.
ES = ES(x1, x2, . . . , xP ). Theoretically, if the functions in
(6) are explicitly obtained, they can then be substituted into (8)
to give an explicit function of ES(x1, x2, . . . , xP ). Minimizing
ES w.r.t. to xi requires the solution of the equations ∂ES

∂xi
= 0

for i = 1, . . . , 2P . However, solving equations (4) and (5)
for αl’s explicitly with general values of xi (ie. not numerical
values) is practically intractable. Even with one pinned zero,
using this explicit technique results in a monstrous expression
for ES(x1).

An implicit technique to minimizing ES is needed which
is presented next. The key idea in the technique is to exploit
the implicit functional dependence embedded in (4) and (5)
by performing implicit differentiation of these equations. The
technique is best explained by first considering the simplest
case with one pinned zero. We then consider the case with
two pinned zeros before generalizing to an arbitrary number
of zeros. For brevity of notation the following symbols shall
be used: α̃l ≡ αL+l and k̃l ≡ kL+l for l = 1, . . . , 2P . We
refer to (4) and (5) with a specific i value (ie. specific zero x i)
as (4)-i and (5)-i respectively, eg. (4)-1 is equation (4) with
xi = x1.
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A. One Pinned Zero x1

Differentiating (8) w.r.t. x1 and equating to zero gives:
dES

dx1
= a1

dα̃1
dx1

+ a2
dα̃2
dx1

= 0. Differentiating (4)-1 w.r.t. x1

and using (5)-1 gives: k̃1(x1)dα̃1
dx1

+ k̃2(x1)dα̃2
dx1

= 0. In matrix
form we have:[

a1 a2

k̃1(x1) k̃2(x1)

][
dα̃1
dx1
dα̃2
dx1

]
=

[
0
0

]

With dα̃1
dx1

and dα̃2
dx1

considered as unknowns, the equations are
simultaneous homogeneous equations. The trivial solution (all
zeros) is one possible solution to homogeneous equations but
this would mean (i) dα̃1

dx1
= 0 and (ii) dα̃2

dx1
= 0. In general,

the solution (for the x1 value) to (i) will be different to the
solution to (ii). For non-trivial solutions, the determinant must

be zero, ie.

∣∣∣∣ a1 a2

k̃1(x1) k̃2(x1)

∣∣∣∣ = 0. Solving the determinant

equation gives the optimal value of x1.

B. Two Pinned Zeros x1, x2

Differentiating (8) w.r.t. x1 and equating to zero gives:
a1

∂α̃1
∂x1

+ a2
∂α̃2
∂x1

+ a3
∂α̃3
∂x1

+ a4
∂α̃4
∂x1

= 0. Differentiating (4)-
1 w.r.t. x1 and using (5)-1 gives: k̃1(x1)∂α̃1

∂x1
+ k̃2(x1)∂α̃2

∂x1
+

k̃3(x1)∂α̃3
∂x1

+ k̃4(x1)∂α̃4
∂x1

= 0. Differentiating (4)-2 and (5)-
2 w.r.t. x1 give k̃1(x2)∂α̃1

∂x1
+ k̃2(x2)∂α̃2

∂x1
+ k̃3(x2) ∂α̃3

∂x1
+

k̃4(x2)∂α̃4
∂x1

= 0 and k̃′
1(x2) ∂α̃1

∂x1
+ k̃′

2(x2) ∂α̃2
∂x1

+ k̃′
3(x2) ∂α̃3

∂x1
+

k̃′
4(x2) ∂α̃4

∂x1
= 0 respectively. Putting the four equations in

matrix form, we have:

⎡
⎢⎢⎣

a1 a2 a3 a4

k̃1(x1) k̃2(x1) k̃3(x1) k̃4(x1)
k̃1(x2) k̃2(x2) k̃3(x2) k̃4(x2)
k̃′
1(x2) k̃′

2(x2) k̃′
3(x2) k̃′

4(x2)

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

∂α̃1
∂x1
∂α̃2
∂x1
∂α̃3
∂x1
∂α̃4
∂x1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦
(9)

which are simultaneous homogeneous equations. Denoting the
4×4 matrix as K(x1, x2), the condition for non-trivial solution
is the following determinant equation:

|K(x1, x2)| = 0 (10)

We repeat the above process but with the roles of x1 and x2

interchanged. All differentiation will be w.r.t. x2. To get the
second equation, (4)-2 and (5)-2 are utilized. To get the third
and fourth equations, (4)-1 and (5)-1 are utilized. A matrix
equation similar to (9) is obtained but with the following
differences: (i) The unknowns are derivatives w.r.t. x2, eg. ∂α̃1

∂x2
etc. ; (ii) The matrix of coefficient is K(x2, x1) (ie. x1 and
x2 are interchanged). Applying the condition for non-trivial
solution gives the following determinant equation:

|K(x2, x1)| = 0 (11)

Solving the determinant equations (10) and (11) simultane-
ously gives the optimal value of x1 and x2.

C. General Case

With P pinned zeros there will be P determinant equations
which can be solved simultaneously to give the P pinned
zeros. To get the first determinant K(x1, x2, . . . , xP ), we
apply the generalization of the process described above:

1) Differentiate (8) w.r.t. x1 and equate to zero to get one
equation.

2) Differentiate (4)-1 w.r.t. x1 and use (5)-1 to get another
equation.

3) Differentiate (4)-1 and (5)-1 w.r.t. xp, p �= 1, one p at
a time for all p (�= 1), to give the remaining 2P − 2
equations.

4) Putting all the equations together in matrix form and
equating the determinant of the matrix (of size 2P×2P )
to zero gives the determinant equation.

Using symmetry arguments, the other determinants can be
obtained by interchanging x1 with xl (l �= 1) in the first
determinant function K(x1, x2, . . . , xP ).

D. Solving the Determinant Equations

The solution of simultaneous (non-linear) polynomial equa-
tions is required to determine the optimal zeros. There are a
plethora of methods for solving non-linear system of equations
but a relatively straightforward method is multidimensional
version of the classical Newton-Raphson method [6]. We
utilized this method and found it sufficient for the task at
hand. The method can be described as follows. Suppose the
equation (vector form) to be solved is given by F(x) = 0.
Starting with an initial solution x0, the solution is successively
updated as xnew = xold + δx. The correction vector δx is
obtained by solving the linear equation J.δx = −F where
J is the Jacobian of F (ie. Ji,j = ∂Fi

∂xj
) and both F and J

are evaluated at x = xold. The iterative process is terminated
when ||xnew − xold|| or ||F(xnew)|| is sufficiently small.

IV. DESIGN EXAMPLES

Several examples will be presented to illustrate the versa-
tility of the technique. In all examples the response of the
maximally flat filter (polynomial) with the same length (as the
example) will also be shown. A comparison that will show
increased sharpness with zero pinning can then be readily
made.

Example 1: The values N = 15 and L = 5 will yield a
length 16 CQF with 6 VM (zeros at z = −1). There are 2
non-zero αl’s allowing one pinned zero. Choose xS = 0.7
(stopband edge). For this simple case the Newton-Raphson
method is not needed and the determinant equation reduces to
a quadratic equation given by: 8x2

1 − 8x1 + 7(1− xS)xS = 0.
The optimal zero is x1 = 0.7574 resulting in (α6, α7) =
(0.4950,−2.3253). The frequency response (in the variable
x) of the product filter is shown in figure 1 (solid line) where
the maximally flat equivalent (dashed line) is also shown.

Example 2: Same as example 1 except now xS = 0.6
(stopband edge). The optimal zero is x1 = 0.7 resulting in
(α6, α7) = (1.5607,−5.6452). The frequency response (in the
variable x) of the product filter is shown in figure 1 (dotted
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line) where the maximally flat equivalent (dashed line) is also
shown.

The examples above illustrate the trade-off mechanism
(between sharpness and ripple size). Note that the first pinned
zero x1 > xS and this also occurs for other examples with
more pinned zeros.

Example 3: The values N = 15 and L = 3 will yield
a length 16 CQF with 4 VM (zeros at z = −1). There
are 4 non-zero αl’s allowing two pinned zeros. Choose
xS = 0.65 (stopband edge). Using the Newton-Raphson
method, it took less than 10 iterations to converge to the
following solution: (x1, x2) = (0.7053, 0.8415) resulting
in (α4, α5, α6, α7) = (0.3923,−2.8048, 9.6177,−18.7722).
The frequency response (in the variable x) of the product
filter is shown in figure 2 (solid line) where the maximally
flat equivalent (dashed line) is also shown. Compared with
example 2 there is reduced ripple magnitude but also reduced
flatness at ω = π, ie. reduced VM (note that the transition
band sharpness is about the same in both examples).

Example 4: The values N = 19 and L = 3 will yield
a length 20 CQF with 4 VM (zeros at z = −1). There
are 6 non-zero αl’s allowing three pinned zeros. Choose
xS = 0.6 (stopband edge). Using the Newton-Raphson
method, it took less than 10 iterations to converge to the
following solution: (x1, x2, x3) = (0.6545, 0.7790, 0.8946)
resulting in (α4, α5, α6, α7, α8, α9) =
(0.5409,−5.1812, 25.1034,−77.6745, 164.868,−243.017).
The frequency response (in the variable x) of the product
filter is shown in figure 3 (solid line) where the maximally
flat equivalent (dashed line) is also shown. This example
shows that filter with sharp transition roll-off can be designed
with this technique.

In the examples above the stopband response values are
close to 0 and one may argue that zero-pinning may not be
necessary. Our experience shows that minimzing the stopband
energy of the PBP without any constraint to ensure non-
negativity will result in product filters with negative response
values (see [1] for discussion). This will create problems
during the spectral factorization process. This approach is
however viable if the PBP is used instead for biorthogonal
filter design [7], [8] as non-negativity is not mandatory there.

V. SUMMARY

A least squares approach has been presented for the design
of orthonormal wavelet filters with a prescribed number of
vanishing moments. The technique utilizes the principle of
zero-pinning the Parametric Bernstein Polynomial. The posi-
tion of the pinned zeros were chosen to minimize a stopband
energy measure of the filter. An implicit differentiation tech-
nique was presented to derive the equations governing the
position of the optimal zeros. The design process requires
the solution of a system of non-linear (polynomial) equations
which was achieved through the use of the multidimen-
sional Newton-Raphson algorithm. Examples were presented
to demonstrate the flexibility of the technique for designing
filters with a variety of characteristics.
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Fig. 1. Degree 15 Parametric Bernstein Polynomial. Solid line: example 1.
Dotted line: example 2. Dashed line: maximally flat.
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Fig. 2. Degree 15 Parametric Bernstein Polynomial. Solid line: example 3.
Dashed line: maximally flat.
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Fig. 3. Degree 19 Parametric Bernstein Polynomial. Solid line: example 3.
Dashed line: maximally flat.
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