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ABSTRACT

Functional link artificial neural networks exploiting or-
thogonal functional expansions have been recently proposed
as efficient structures for nonlinear active noise control. In
this paper it will be shown that simple piecewise-linear ex-
pansions can effectively replace trigonometric and orthogonal
polynomial expansions. The controller is adapted using an
extension of the Affine Projection algorithm we recently pro-
posed and studied with reference to its transient and steady-
state behavior.

1. INTRODUCTION

While the majority of ANC systems applied in practice are
linear, in the last years the relevance of the nonlinear effects
in actual applications has been widely recognized. Different
nonlinear filtering structures have been proposed in the litera-
ture to cope with nonlinearities. Among them, Volterra filters
have been widely adopted [1], [2], [3]. More recently, func-
tional link artificial neural networks (FLANN) were proposed
in [4] as an alternative to Volterra filters. Like in the case of
Volterra filters, the output of a FLANN structure depends lin-
early from the filter coefficients. However, in contrast to the
Volterra filters, where the terms multiplied by the coefficients
are products of present and past input samples, FLANNs em-
ploy nonlinear functional expansions of the present sample.
Moreover, it is worth noting that both Volterra and FLANN
filters can be efficiently implemented in the form of filter
banks, as shown in [2], [3], [4].

It was also shown in [4] that FLANNs using trigonomet-
ric functional expansions and a variation of the Filtered-X
LMS algorithm can provide in some cases better behaviors
than Volterra filters adapted with an equivalent algorithm.

In this paper we will consider FLANN structures exploit-
ing very simple piecewise linear (PWL) functional expan-
sions. We will show that even better performances than with
more complex orthogonal expansions can be obtained. More-
over, we extend to the these structures the Affine Projection
(AP) adaptation algorithms previously applied to Volterra fil-
ters [3]. The transient and steady-state behaviors of these al-
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gorithms have been studied in [5]. Since the filters equipped
with PWL functional expansions belong to the class of filters
whose output depend linearly from the filter coefficients, it is
possible to extend to them this analysis and thus to motivate
the good performances obtained.

The paper is organized as follows. In Section 2 the exact
and an approximate adaptation algorithms studied in [5] are
reformulated to be applied to the structures based on func-
tional expansions in the general case of a multichannel ANC
scheme. In Section 3 the nonlinear active noise controller
based on PWL functional expansions is described in detail.
Simulation results are presented and discussed in Section 4
with reference to a narrow-band noise source in a single chan-
nel environment and to a wide-band noise source in a multi-
channel environment. Concluding remarks are presented in
Section 5.

2. FILTERED-X AFFINE PROJECTION
ALGORITHMS

The simplified scheme of a multichannel feed-forward active
noise controller with I noise source signals, J actuators sig-
nals and K error sensors is shown in Figure 1.
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Fig. 1. Multichannel feedforward active noise controller.

It is assumed here that the models of the secondary paths
are available. The j-th actuator output is modeled as

yj(n) =
I∑

i=1

x̃T
i (n)wj,i(n), (1)
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Fig. 2. Filter implementation using functional expansions.

where wji(n) is the coefficient vector of the filter connecting
the input i to the output j of the adaptive controller, and x̃i(n)
is the i-th signal vector at the input of the adaptive part of
the controller, which in our approach is expressed as a vector
function of the noise source samples xi. Its general form is
given by

x̃i(n) =
[
f1

[
xi

]
, f2

[
xi

]
, . . . , fM

[
xi

]]T
, (2)

where fi[·], for any i = 1 . . . M , is a time invariant functional
of its argument. Equations (1) and (2) include linear filters,
truncated Volterra filters of any order p [3] and other non-
linear functionals as the FLANN structures proposed in [4].
The realization of a filter belonging to such a class of filters
is shown in Figure 2. In the case of Volterra filters, the func-
tional expansions involve the present and past input samples
whose products are then suitably delayed by the FIR filters.
In contrast, only functional expansions of the present input
sample are used in the FLANN case, as shown in Section 3.

It is worth noting that in the multichannel case every filter
in the controller is implemented according to this structure.

To introduce the Filtered-X AP algorithms applied to the
FLANN structures, the following notations are used:
L is the affine projection order,
Nt is the number of elements of vectors x̃i(n) and wj,i(n),
Nt · I · J is the number of coefficients of w(n),
xi(n) is the i-th primary source input signal vector,
x̃i(n) is the functionally expanded i-th input signal vector

x̃(n) =
[
x̃T

1 (n), . . . , x̃T
I (n)

]T
, is the full functionally ex-

panded input signal vector,
wj,i(n) is the coefficient vector of the filter connecting the
input i to the output j of the controller,
wj(n) =

[
wT

j,1(n), . . . ,wT
j,I(n)]T is the aggregate of the co-

efficient vectors at the output j of the controller,
w(n) =

[
wT

1 (n), . . . ,wT
I (n)]T is the full coefficient vector

of the controller,
yj(n) = wT

j (n)x̃(n) is the j-th secondary source signal,
dk(n) is the output of the k-th primary path,

dk(n) =
[
dk(n), . . . , dk(n − L + 1)

]T
is the vector of the L

past outputs of the k-th primary path,

d(n) =
[
dT

1 (n), . . . ,dT
K(n)

]T
is the full vector of the L past

outputs of the primary paths,
sk,j(n) is the impulse response of the secondary path con-
necting the j-th secondary source to the k-th error sensor,
uk,j(n) = sk,j(n) � x̃(n) is the Filtered-X vector obtained
by filtering, sample by sample, x̃(n) with sk,j(n),
uk(n) =

[
uT

k,1(n), . . . ,uT
k,J (n)]T is the aggregate of the

Filtered-X vectors associated with the output k,
Uk(n) =

[
uk(n),uk(n−1), . . . ,uk(n−L+1)] is the matrix

constituted by the last L Filtered-X vectors uk(n),
U(n) =

[
U1(n), . . . ,UK(n)] is the full matrix of Filtered-X

vectors,
ek(n) = dk(n)+

∑J
j=1 sk,j(n)� yj(n) is the k-th error sen-

sor signal,
I indicates an identity matrix of appropriate dimensions,
� denotes the linear convolution,
diag{. . .} is a block-diagonal matrix of the entries {. . .}.

The AP algorithms applied in this paper to the filters in
(1) and (2) are the singlechannel or multichannel exact AP
algorithm and an approximate AP algorithm introduced in [5].

The adaptation rules of the two algorithms can be put in
the same form as follows

w(n + 1) = w(n) − µU(n)e(n), (3)

where µ is a diagonal step-size matrix and the matrix U(n) is
defined according to equations (4) and (5) in case of the exact
and the approximate algorithms respectively,

U(n) = U(n)
[
UT (n)U(n) + δI

]−1
, (4)

U(n) = U(n) · diag
{[

UT
1 (n)U1(n) + δI

]−1
, . . .

. . . ,
[
UT

K(n)UK(n) + δI
]−1

}
, (5)

where δ is a small positive constant. It is worth noting that in
the singlechannel case, where I = J = K = 1, the adapta-
tion equations of (3) and (5) reduces to the adaptation rule of
the exact AP algorithm given by (3) and (4).

3. THE ACTIVE NOISE CONTROLLER BASED ON
PIECEWISE-LINEAR FUNCTIONAL EXPANSIONS

In the FLANN case the resulting structure of a filter in the
controller is simplified as shown in Figure 3. Only functional
expansions of the present input sample are used and then de-
layed by the FIR filters, as in the case of Volterra filters.

In this paper we propose to use only one PWL functional
expansion since, in contrast to what stated in [4], it is not
necessary to resort to orthogonal expansions for efficiently
dealing with nonlinearities. Any admissible PWL function
is required to be an input-output mapping with a discontinu-
ity in the function itself or in its derivative. Among all the
possible choices, the functions named ABS and SIGN in Fig-
ure 4 have been tested in order to minimize the implemen-
tation complexity. The bounds of the definition domain are
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Fig. 3. Filter implementation using FLANN expansions.

fixed as the minimum and the maximum values of the input
signal, xmin and xmax respectively. The ABS PWL func-
tion can be easily computed as f2[xi] = |xi(n) − a|, where
a = (xmin + xmax)/2. Therefore, the Nt × 1 vector x̃i(n)
in (1) is given by

x̃i(n) =
[
xi(n), xi(n − 1), . . . , xi(n − N + 1),

|xi(n) − a|, . . . , |xi(n − N + 1) − a|]T
. (6)

where N is the memory length of the two FIR filters and thus
Nt = 2N . The SIGN PWL function can be expressed as
f2[xi] = sign

(
xi(n) − b

)(
xi(n) − a

)
, where b = xmin +

(xmax − xmin)/4. It is worth noting that the preliminary
knowledge of the range of the input signal is required. How-
ever, it has been noted that, in general, even a rough evalua-
tion of the minimum and maximum values allows good per-
formances in the adaptation procedure. The rational for using
such kinds of functional expansions can be appreciated in the
two main cases [1], [2] where nonlinear effects are important,
i. e., when a) the primary paths include some nonlinearities
and b) the noise is modelled as a chaotic signal.

In the first case, in fact, high order harmonics are gen-
erated by the primary paths that need to be re-created in the
secondary paths. The above defined PWL functions are able
to furnish these high order harmonics whose amplitudes and
phases are adjusted by the adaptive part of the controller. A
simulation result illustrating this principle for a narrow-band
scheme will be described in the next section.

In the second case, even though the previous argument can
be in principle still exploited, we prefer to resort to the the-
ory presented in [5] to validate our results. The expressions

0
xmin xmax

xmax−xmin
2

xmin xmaxa a

ABS SIGN

Fig. 4. PWL functional expansions.
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Fig. 5. Attenuation at the error microphone.

for the MSD and MSE in [5] can be suitably adapted, ac-
cording to this theory, to deal with the functional expansions
proposed here. Due to the lack of space, these expressions
can not be explicitly presented in this paper. Nevertheless, an
example of the results obtained for a wide-band multichannel
scheme will be commented in Section 4, so that the good per-
formances obtained with PWL functions can be supported by
theoretically derived arguments.

4. SIMULATION RESULTS

A. Single-channel narrow -band experiment .
The simulation environment is that of Experiment III in

[4]. The input noise is a sinusoidal signal at 500 Hz sampled
at 8000 samples/s and corrupted with a Gaussian noise with
40 dB of attenuation. The primary path is characterized by a
nonlinear input-output relationship

dp(n) = u(n − 2) + 0.08u2(n − 2) − 0.04u3(n − 1)) (7)

applied to the input samples filtered with the FIR transfer
function

F (z) = z−3 − 0.3z−4 + 0.2z−5. (8)

Therefore, the nonlinear combination produces high order har-
monics. The secondary path is characterized by the nonmini-
mum phase transfer function

S(z) = z−2 + 1.5z−3 − z−4. (9)

The structures used in the controller are the PWL functional
expansions in Figure 4. The length of the FIR filters has been
fixed equal to 10 so that the total number of coefficients is
equal to 20. Figure 5 shows the adaptation curves obtained
by using the SIGN function in addition to the linear channel.
In this figure, the ensemble averages at the error microphone
for 50 runs of the adaptation algorithm in (3), (5) for the affine
projection order L = 1, 2, 3 are reported. The ensemble av-
erages are normalized to the power of unattenuated noise at
the error microphone as in [4]. The constant δ is set equal to
0.001 and the step size is chosen equal to 0.0560. The dia-
grams in Figure 5 show the good convergence behavior and
the effect of the AP order.
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e4000 L=1 L=2 L=3

FLANN sin/cos -37.2 -37.1 -37.1
ABS -36.7 -36.9 -37.3
SIGN -37.7 -37.8 -37.9

Table 1. NMSE at 4000 iterations.

Table 1 reports the mean residual errors at 4000 iterations
for the 3-channel structure equipped with the sine and co-
sine functions as in [4], and the 2-channel structures equipped
with the ABS and SIGN functions. The comparisons have
been made by choosing for the different configurations the
step sizes which guarantee close convergence speeds, mea-
sured by a residual error at the iteration n = 250 equal to
−25.0 ± 0.1dB for L = 1. The results in Table 1 show
that PWL expansions can offer similar or even better perfor-
mances than usual FLANNs.

B . Multichannel wide-band experiment .
In this experiments we consider a multichannel active noise

controller with I = 1, J = K = 2 as in the experiment C
in [5]. The transfer functions of the primary and secondary
paths are

p1,1(z) = 1.0z−2 − 0.3z−3 + 0.2z−4,

p2,1(z) = 1.0z−2 − 0.2z−3 + 0.1z−4,

s1,1(z) = 2.0z−1 − 0.5z−2 + 0.1z−3,

s1,2(z) = 2.0z−1 − 0.3z−2 − 0.1z−3,

s2,1(z) = 1.0z−1 − 0.7z−2 − 0.2z−3,

s2,2(z) = 1.0z−1 − 0.2z−2 + 0.2z−3.

The input signal is the normalized logistic noise [1] and the
controller employs the ABS functional expansion and two
FIR filters of length 4.

Figure 6 diagrams the steady-state MSE of the exact (up-
per curves) and approximate (lower curves) AP Filtered-X
algorithms estimated according to the theory in [5] and ob-
tained from simulations with time averages over 10 billion
samples, at different values of step-size µ and for the AP or-
der L = 1, 2 and 3. In Fig. 6 the theoretical values (solid
lines) of MSE fall close to the corresponding simulation val-
ues (dashed lines). The approximate algorithm in (3) and (5)
provides better MSE values than the exact algorithm in (3)
and (4). However, it provides also a lower convergence speed
than the exact algorithm, as confirmed by Figure 7 where the
evolution of the residual errors are plotted for the step-size
µ = 0.007813, together with the corresponding steady-state
MSE values (dashed lines). Again, the upper curves refer to
the exact algorithm, while the lower ones refer to the approx-
imate algorithm. It is worth noting that these performances
are better than those obtained with Volterra filters in [5].
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Fig. 7. Residual errors with the ABS function

5. CONCLUDING REMARKS

In this paper exact and approximate Filtered-X AP algorithms
have been extended to structures using functional expansions.
It has been shown that simple PWL functions can be exploited
to deal with nonlinearities in ANC. The relevant result is that
efficient controllers can be designed as filter banks in which
the nonlinear channel has the same complexity of the linear
channel.
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