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ABSTRACT

Affine projection algorithm, which updates the weight vector based
on several previous input vectors, is an useful adaptive filter to im-
prove the convergence speed of LMS-type filter. However, the com-
putational complexity of adaptation algorithm highly depends on the
number of input vectors used for update. In this paper, we propose
affine projection algorithm with selective regressors whose purpose
is to reduce complexity by selecting a subset of input regressors at
every iteration. The optimal selection of input regressors is derived
by comparing the cost functions based on the principle of minimum
disturbance. The new algorithms show good convergence perfor-
mance as attested to by various experimental results.

1. INTRODUCTION

Adaptive filters with the use of least-mean-square (LMS) adaptation
algorithm have been extensively applied to a wide range of diverse
fields such as communications, control, acoustics and speech pro-
cessings due to its computational simplicity and ease of implemen-
tation. However, colored input data tend to deteriorate the conver-
gence performance of LMS-type adaptive filter [1][2]. To overcome
this problem, Ozeki and Umeda [3] developed the basic form of an
affine projection algorithm (APA) that is based on affine subspace
projections. APA is a useful family of adaptive filters whose main
purpose is to speed the convergence of LMS-type filters, especially
for correlated data. Generally the convergence performance of APA
becomes improved as the number of previous input vectors increases
but the computational complexity can become prohibitively large.

To reduce the computational complexity, a number of selective
partial update NLMS and APA have been proposed [4][5]. These al-
gorithms focus on updating a selected subset of filter coefficients at
every iteration because the computational complexity is proportional
to the number of filter coefficients. In APA, however, the computa-
tional complexity of adaptation algorithm also highly depends on the
number of input regressors used for update. Therefore, in this paper,
we propose the selective regressor APA (SR-APA) whose purpose
is to reduce complexity by selecting a subset of input regressors at
every iteration. The optimal selection of input regressors is derived
by comparing the cost functions based on the principle of minimum
disturbance and the geometric interpretation. We also develop, as a
special case, NLMS with selective regressors.

The paper is organized as follows. In Section II, we derive the
conventional APA by posing the adaptation problem as a constraint

This work was supported in part by the Brain Korea (BK) 21 Program
funded by the Ministry of Education, and in part by HY-SDR Research Cen-
ter at Hanyang University under the ITRC Program of MIC.

optimization problem. In Section III, we develop the SR-APA and
provide optimal selection method of regressors. Section IV con-
tains experimental results which illustrate the performance of the
new adaptive algorithms and Section V presents conclusions.

2. AFFINE PROJECTION ALGORITHM

Consider data {d(i)} that arise from the model

d(i) = uiw
o + v(i) (1)

where wo is an unknown column vector that we wish to estimate,
v(i) account for measurement noise and ui denotes 1×M row input
regressor vectors

ui =
[
u(i) u(i − 1) . . . u(i − M + 1)

]
.

To update wi, the constrained minimization problem based on the
principle of minimum disturbance, which is solved by the affine pro-
jection algorithm, can be written as

min
wi

‖wi − wi−1‖2 subject to di = Uiwi (2)

where

di =

⎡
⎢⎢⎢⎣

d(i)
d(i − 1)

...
d(i − L + 1)

⎤
⎥⎥⎥⎦ , Ui =

⎡
⎢⎢⎢⎣

ui

ui−1

...
ui−L+1

⎤
⎥⎥⎥⎦ .

It can be solved by using the method of Lagrange multipliers[1]. The
cost function to be minimize is

J(i) = ‖wi − wi−1‖2 + 2Re[Λ(di − Uiwi)] (3)

where Λ =
[
λ0 λ1 . . . λL−1

]
, λ ia a Lagrange multiplier

and Re(x) denotes a real part of x. Setting ∂J(i)/∂w∗
i = 0 and

∂J(i)/∂Λ = 0, we get

wi − wi−1 − U∗
i Λ∗ = 0 (4a)

di − Uiwi = 0. (4b)

Substituting (4a) into (4b), we get

Λ∗ = (UiU
∗
i )−1ei (5)

where ei = di − Uiwi−1. After substituting (5) into (4a) and intro-
ducing a small positive stepsize µ, we obtain the following recursion

wi = wi−1 + µU∗
i (UiU

∗
i )−1ei. (6)

The computational complexity of the APA using L input regressors
is (L2 +2L)M +L3 +L2 multiplications per iteration for real data
[2].
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3. SELECTIVE REGRESSOR AFFINE PROJECTION
ALGORITHM (SR-APA)

Our objective is to reduce computational complexity of the original
L-order APA by selecting an adequate subset of input regressors at
every iteration while minimizing the performance degradation. Let’s
suppose that we wish to select K input regressors among L input
regressors at every iteration. Let TK = {t0, t1, . . . tK−1} denote a
K-subset (subset with K members) of the set {0, 1, . . . , L− 1} and
let S be the collection of all K-subsets, i.e., TK ∈ S . We can write
a constrained minimization problem for new K-order APA as

min
wi

‖wi − wi−1‖2 subject to di,TK
= Ui,TK

wi (7)

where

di,TK
=

⎡
⎢⎢⎢⎣

d(i − t0)
d(i − t1)

...
d(i − tK−1)

⎤
⎥⎥⎥⎦ , Ui,TK

=

⎡
⎢⎢⎢⎣

ui−t0

ui−t1

...
ui−tK−1

⎤
⎥⎥⎥⎦ .

Then the cost function with selective regressors can be written as

JTK
(i) = ‖wi − wi−1‖2 + 2Re[ΛTK

(di,TK
− Ui,TK

wi)]. (8)

Similarly, the update equation of APA with selective regressors can
be represented by

wi = wi−1 + µU∗
i,TK

(Ui,TK
U∗

i,TK
)−1ei,TK

(9)

where ei,TK
= di,TK

− Ui,TK
wi−1.

3.1. Optimal regressor selection

We now turn our attention to how to optimally select the regressors to
be used for update at every iteration. Generally, using fewer input re-
gressors in APA causes the performance degradation in convergence
speed. Thus the regressor selection should be made by identifying
the regressors with the least performance degradation. For this, we
should select the regressors which make JJK

(i) as close as possible
to J(i) where JK ∈ S . Assume that the quantity of weight update
is small. Assume that the quantity of weight update is small. Then,
a posteriori error is similar to a priori error, i.e., di − Uiwi ≈ ei

and di,JK
−Ui,JK

wi ≈ ei,JK
. Using this, we find from (3) and (8)

that the cost functions can be approximated by

J(i) = ‖wi − wi−1‖2 + 2Re[Λei] (10a)

JJK
(i) = ‖wi − wi−1‖2 + 2Re[ΛJK

ei,JK
], (10b)

respectively. Using the calculation method of the Lagrange multipli-
ers such as (5), the regressor selection problem can be represented
as

TK = arg min
JK∈S

|J(i) − JJK
(i)|

= arg min
JK∈S

|e∗i (UiU
∗
i )−1ei − e∗i,JK

(Ui,JK
U∗

i,JK
)−1ei,JK

|.
(11)

Since e∗i,JK
(Ui,JK

U∗
i,JK

)−1ei,JK
is always positive and smaller

than e∗i (UiU
∗
i )−1ei, we can rewrite (11) as

TK = arg max
JK∈S

e∗i,JK
(Ui,JK

U∗
i,JK

)−1ei,JK
. (12)

Table 1. Computational complexity of conventional APA and SR-
APA

SR-APA
Conventional

APA Computations Additional
for weight update computations

Multiplications
(L2 + 2L)M (K2 + 2K)M (L − K)M

+L3 + L2 +K3 + K2 +L + 1

Divisions - - L

Comparisons - -
L log2 K

+O(L)

Therefore the proposed SR-APA is given by

wi = wi−1 + µU∗
i,TK

(Ui,TK
U∗

i,TK
)−1ei,TK

TK = arg max
JK∈S

e∗i,JK
(Ui,JK

U∗
i,JK

)−1ei,JK
.

(13)

However, the full implementation of (13) can be computationally
very expensive because of the high complexity associated with sub-
set selection. Motivated by the relationship between the matrix norms
and quadratic forms proposed in [5], we propose an alternative sim-
plified criterion for regressor selection: Rank e2

j (i)/‖ui−j‖2, j ∈
{0, 1, . . . , L−1} and select the regressors associated with K largest
values for update where ej(i) = d(i − j) − ui−jwi−1. The simpli-
fied criterion is formally given by

e2
t0(i)

‖ui−t0‖2
≥ e2

t1(i)

‖ui−t1‖2
≥ . . . ≥

e2
tK−1(i)

‖ui−tK−1‖2

≥ . . . ≥ e2
j (i)

‖ui−j‖2

(14)

where j ∈ {0, 1, . . . , L − 1}. Note that the simplified criterion
can be derived when we focus only on the diagonal components of
Ui,JK

U∗
i,JK

. If Ui,JK
U∗

i,JK
is a diagonal matrix, the maximum

value in (12) can be rewritten as

max
JK∈S

e∗i,JK

(
Ui,JK

U∗
i,JK

)−1
ei,JK

≈ e2
t0(i)

‖ui−t0‖2
+

e2
t1(i)

‖ui−t1‖2

+ . . . +
e2

tK−1(i)

‖ui−tK−1‖2
.

(15)

which makes (14) be the solution of (12). Although the simplified
criterion is not exactly equivalent to (13), it has satisfactory con-
vergence performance, while keeping the computational complexity
low. For every input sample, the additional computational complex-
ity for (14) is (L−K)M +L+1 multiplications and L divisions for
calculation, and O(L) + L log2 K comparisons for regressor selec-
tion by the heapsort algorithm [6]. Table 1 shows the computational
complexity of conventional APA and the proposed SR-APA. The ad-
ditional computational complexity is relatively small compared with
that for the weight update.

3.2. NLMS with selective regressors

A special case of SR-APA is NLMS with selective regressors ob-
tained by setting K = 1. From (13), NLMS with selective regressors
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1iw −

ow

( )iu w d i=
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iw

Fig. 1. The weight update example of the proposed algorithm for
L=3, K=1 and M=2.

can be represented as

wi = wi−1 + µ
u∗

i−t

‖ui−t‖2
et(i)

t = arg max
j∈{0,1,...,L−1}

e2
j (i)

‖ui−j‖2

(16)

in which the simplified criterion is no more required, that is, the sim-
plified criterion is exactly equivalent to (16). Note that NLMS with
selective regressors is the approximated version of L-order APA,
which means that NLMS with selective regressors has better con-
vergence performance than conventional NLMS.

3.3. Geometric interpretation

In this section, we will investigate the geometric interpretation of
(13). Assume that µ = 1 for convenience. Then, wi is obtained by
projecting the given weight vector, wi−1 onto the intersection of the
affine subspace defined by {d(i − t), ui−t} where t ∈ TK . By the
Pythagorean theorem, we can write

‖wi − wo‖2 = ‖wi−1 − wo‖2 − ‖wi − wi−1‖2 (17)

for given wi−1 and wo. Using the update equation in (13), we can
also write

‖wi − wi−1‖2 = e∗i,TK
(Ui,TK

U∗
i,TK

)−1ei,TK
. (18)

Substituting (18) into (17), we get

‖wi−wo‖2 = ‖wi−1−wo‖2−e∗i,TK
(Ui,TK

U∗
i,TK

)−1ei,TK
(19)

Since e∗i,TK
(Ui,TK

U∗
i,TK

)−1ei,TK
is the maximum value for all K-

subsets, ‖wi − wo‖2, the norm square of a posteriori weight error
vector is minimized. In other words, the proposed algorithm up-
dates the weight vector based on the combinations of input regres-
sors which have the best convergence speed of all possible combina-
tions. Fig 1. shows the weight update example for L = 3, K = 1
and M = 2. To minimize the norm square of a posteriori weight
error vector, ui−2 is selected for update.

4. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed algorithm by carrying
out computer experiments in a channel estimation in which the un-
known channel is randomly generated. The adaptive filter and the
unknown channel are assumed to have the same number of taps. The
input signal u(i) is obtained by filtering a white, zero-mean, Gaus-
sian random sequence through a first-order autoregressive system

G(z) =
1

1 − 0.9z−1
.

As a result, a highly correlated Gaussian signal is generated. The
signal-to-noise ratio (SNR) is calculated by

SNR = 10 log10

(
E

[
y2(i)

]
/E

[
v2(i)

])

where y(i) = uiw
o and the measurement noise v(i) is added to y(i).

The step-size is set to µ = 0.5. For better convergence performance,
the data {di, Ui} are taken as

di =

⎡
⎢⎢⎢⎣

d(i)
d(i − D)

...
d(i − (L − 1)D)

⎤
⎥⎥⎥⎦ , Ui =

⎡
⎢⎢⎢⎣

ui

ui−D

...
ui−(L−1)D

⎤
⎥⎥⎥⎦

where D = 8. The experimental results are obtained by ensemble
average over 200 independents trials.

First, we compare the convergence performance of the conven-
tional APA, the SR-APA and the SR-APA using simplified criterion.
Fig.2 shows a plot of the MSE learning curve versus iteration num-
ber for the three APA algorithms with SNR = 30dB. The adaptive
filter length is set to M = 32. The order of conventional APA is set
to 16 and the number of selective regressors set to 12 (K = 12) out
of 16 (L = 16). The convergence speed of the proposed 12-order
APA with selective regressors is similar to the conventional 16-order
APA. Moreover, no significant difference is observed between the
convergence speeds of the two proposed algorithms while the sim-
plified version has a better computational merit.

Fig.3 shows the learning curves of NLMS and NLMS with selec-
tive regressors. The adaptive filter length is set to M = 32 and SNR
is set to 30dB. To compare the convergence performance of the pro-
posed algorithms with that of the conventional NLMS, the number
of regressor candidates, L is set to 4, 2 while the number of selective
regressors is set to K = 1. As can be seen, the proposed NLMS with
selective regressors converges faster than the conventional NLMS as
the number of regressor candidates increases.

The convergence curves for the conventional APA and the pro-
posed algorithm with similar computational complexity are shown
in Fig.4. The adaptive filter length is set to M = 128 and SNR is set
to 50dB. To make the computational complexity similar, the order
of the conventional APA is set to 34 (197132 multiplications) and
the number of selective regressors is set to K = 33 out of L = 64
(188643 multiplications, 64 divisions and 332+O(64) comparisons).
As can be seen, the proposed algorithm has faster convergence speed
than the conventional APA when the computational complexity is set
to be similar.

5. CONCLUSIONS

We have proposed the SR-APA whose purpose is to reduce computa-
tional complexity by selecting a subset of input regressors. The opti-
mal selection of input regressors has been derived by the comparison
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Fig. 2. Convergence curves for the conventional APA, the SR-APA
and the SR-APA using simplified criterion.

of the cost functions based on the principle of minimum disturbance.
Moreover, a simplified approximation has been proposed to alleviate
the large computational complexity of selection criterion. The sim-
plified criterion has been shown to be capable of maintaining a good
convergence performance.
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