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ABSTRACT

We propose a family of novel affine projection algorithms (APA)

with adaptive regularization matrix. Conventional regularized APA

(R-APA) uses a fixed and weighted identity matrix for regulariza-

tion. The proposed algorithms incorporate a non-identity regulariza-

tion matrix which is also dynamically updated. The matrix adapta-

tion is based on the normalized stochastic-gradient of mean-square

error. As a result, the efficient and robust algorithms are derived.

Throughout experiments, we illustrate that the proposed algorithms

show better performance than the conventional R-APA and compa-

rable to the RLS algorithm in terms of the convergence rate and the

misadjustment error.

1. INTRODUCTION

The normalized least mean square (NLMS) is the most frequently

used adaptive algorithm due to its simplicity and ease of implemen-

tation. However, its convergence rate is significantly reduced for

colored input signals [1]–[3]. To overcome this problem, the affine

projection algorithm (APA) was proposed by Ozeki and Umeda [4].

While the NLMS updates the weights based only on the current in-

put vectors, the APA updates the weights on the basis of the last K

input vectors [4][5]. In the APA, the inversion of a rank deficient

matrix may give rise to the singularity. To avoid this situation, a

positive constant δ called the regularization parameter is used. We

use the regularized APA (R-APA) as opposed to the simple APA in

order to highlight the presence of the regularization parameter δ; the

terminology APA is reserved for the case δ = 0. Recently, it was

known that the regularization parameter also plays a critical role in

the convergence performance of the R-APA [7][8]. In the R-APA,

the regularization parameter δ governs the rate of convergence and

the misadjustment error. To meet the conflicting requirements of

fast convergence and low misadjustment error, the regularization pa-

rameter needs to be optimized and updated.

In this paper, we propose a family of novel APA with adap-

tive regularization matrix. Conventional R-APA uses a fixed and

weighted identity matrix for regularization. The key point of the

paper is in the use of adaptive non-identity matrix instead of conven-

tional fixed and weighted identity matrix. The proposed algorithms

incorporate a non-identity regularization matrix which is also dy-

namically updated. The matrix adaptation is based on the normalized

stochastic-gradient of mean-square error. As a result, the efficient

and robust algorithms are derived. We show that the proposed algo-

rithm has low additional complexity compared to the conventional
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R-APA. Throughout experiments, we illustrate that the proposed al-

gorithms show better performance than the conventional R-APA and

comparable to the Recursive Least Square (RLS) algorithm in terms

of the convergence rate and the misadjustment error.

2. PROPOSED R-APA

Consider data d(i) that arise from the system identification model

d(i) = uiw
◦ + v(i), (1)

where w◦ is a column vector for the impulse response of an un-

known system that we wish to estimate, v(i) accounts for measure-

ment noise and ui denotes the 1 × M input vector,

ui = [u(i) u(i − 1) · · ·u(i − M + 1)]. (2)

2.1. Conventional Regularization in R-APA

Let wi be an estimate for w◦ at iteration i. The R-APA computes

wi via

wi = wi−1 + µU∗
i (UiU

∗
i + δI)−1ei, (3)

where

Ui =

�
����

ui

ui−1

...

ui−K+1

�
���� di =

�
����

d(i)
d(i − 1)

...

d(i − K + 1)

�
���� ,

ei = di − Uiwi−1, µ is the step-size, δ is the regularization pa-

rameter and ∗ denotes the Hermitian transpose. The obvious effect

of the regularization parameter not only employs to avoid the inver-

sion of a rank deficient matrix UiU
∗
i , but also plays a critical role in

the convergence performance of the R-APA. A large regularization

parameter will ensure small effective step-size and thus the R-APA

results in small misadjustment error in steady state, but converges

slowly. On the other hand, a small regularization parameter will pro-

vide large effective step-size and thus the R-APA converges fast but

results in large misadjustment error. Along this line of thought we

may expect performance improvement by optimizing and updating

the regularization parameter instead of a fixed δ.

2.2. Proposed R-APA with Adaptive Regularization Matrix

To achieve this purpose, we incorporate a non-identity regularization

matrix which is also dynamically updated so that J(i) = 1
2
e2(i) is

minimized where e(i) = d(i) − uiwi−1. We start with a APA

formulation with a non-identity regularization matrix, ∆i:

wi = wi−1 + µU∗
i (UiU

∗
i + ∆i)

−1ei, (4)
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where ∆i is a K × K diagonal regularization matrix defined by

∆i = diag [δ0(i), δ1(i), . . . , δK−1(i)] . (5)

To adapt the regularization parameter, we use a stochastic gradient

descent approach which can recursively minimize E[e2(i)], i.e.,

δj(i) = δj(i − 1) − ρ∇δJ(i)

for j = 0, 1, . . . , K − 1, (6)

where ρ is a small positive learning rate parameter. The gradient of

J(i) with respect to δj(i − 1), ∇δJ(i), is given by

∇δJ(i) =
∂J(i)

∂e(i)
· ∂e(i)

∂wi−1
· ∂wi−1

∂δj(i − 1)
. (7)

Each term of right-hand side (RHS) of (7) is simply derived as

∂J(i)

∂e(i)
= e(i),

∂e(i)

∂wi−1
= −ui, (8a)

∂wi−1

∂δj(i − 1)
= −µU∗

i−1(Ui−1U
∗
i−1 + ∆i−1)

−1 ·

· ∂∆i−1

∂δj(i − 1)
(Ui−1U

∗
i−1 + ∆i−1)

−1ei−1. (8b)

More detailed derivation of (8b) is in Appendix. Then we have

∇δJ(i) = µe(i)uiU
∗
i−1Γjei−1, (9)

where we are defining

Γj � (Ui−1U
∗
i−1 + ∆i−1)

−1 ∂∆i−1

∂δj(i − 1)
(Ui−1U

∗
i−1 + ∆i−1)

−1.

Note that ∆δj(i) = δj(i) − δj(i − 1) is a function of e(i) and

|∆δj(i)| is proportional to |e(i)| since

|∆δj(i)| = ρµ|e(i)| · |uiU
∗
i−1Γjei−1|.

This implies that a small e(i) after the initial convergence results

in too small change in ∆δj(i) and correspondingly δj(i) undergoes

small variation. This is undesirable since the regularization parame-

ters should be increasingly larger along with iteration to guarantee

the lower misadjustment error.

Motivated by this fact, we normalize the gradient, ∇δJ(i), by

its norm. By introducing the normalized gradient, the regulariza-

tion parameter δj(i) becomes robust to variation of e(i) since the

normalized version of gradient ∇δJ(i) with a fixed ρ always makes

the same stride, independent of how steep the slope of J(i) is. This

property makes the regularization parameter δj(i) relatively stable

when ∇δJ(i) is very small. Thus the regularization parameter δj(i)
is recursively updated by

δj(i) = δj(i − 1) − ρ
∇δJ(i)

|∇δJ(i)| . (10)

Then,
∇δJ(i)
|∇δJ(i)| in (10) can be rewritten by

∇δJ(i)

|∇δJ(i)| = sgn(∇δJ(i)), (11)

where sgn(·) is the signum function which takes the sign of variable.

From (9), (10) and (11), the proposed R-APA with adaptive reg-

ularization matrix is summarized as

δ′j(i)=δj(i − 1) − ρsgn(µe(i)uiU
∗
i−1Γjei−1) (12a)

δj(i)=

�
δ′j(i) if δ′j(i) ≥ δmin

δmin if δ′j(i) < δmin
(12b)

∆i=diag (δ0(i), δ1(i), . . . , δK−1(i)) (12c)

wi=wi−1 + µU∗
i (UiU

∗
i + ∆i)

−1ei, (12d)

where δmin is a minimum allowable value of δj(i).

By setting

δ(i) = δ0(i) = · · · = δK−1(i), (13)

we can get a simpler form of (12d):

δ′(i) = δ(i − 1) −
−ρsgn

�
µe(i)uiU

∗
i−1 (Ui−1U

∗
i−1 + δ(i − 1)I)

−2
ei−1

�
(14a)

δ(i) =

�
δ′(i) if δ′(i) ≥ δmin

δmin if δ′(i) < δmin
(14b)

wi = wi−1 + µU∗
i (UiU

∗
i + δ(i)I)−1ei, (14c)

in which a weighted identity matrix is used for regularization like

the conventional R-APA but the weighted identity matrix is adaptive

here.

In addition, when K = 1, we get a new regularized NLMS (R-

NLMS) algorithm. From (12a) or (14a), the regularized NLMS with

adaptive regularization parameter reduces to

δ′(i) = δ(i − 1) − ρsgn

�
µ

e(i)e(i − 1)uiui−1
∗

(‖ui−1‖2 + δ(i − 1))2

�

= δ(i − 1) − ρsgn(e(i)e(i − 1)uiui−1
∗) (15a)

δ(i) =

�
δ′(i) if δ′(i) ≥ δmin

δmin if δ′(i) < δmin.
(15b)

wi = wi−1 + µ
u∗

i

‖ui‖2 + δ(i)
e(i). (15c)

Table 1 lists the number of multiplications, additions of the com-

putation of the adaptive regularization matrix at each iteration. It is

known [3] that the complexity of the conventional R-APA is (K2 +
2K)M + K3 + K2 multiplications and (K2 + 2K)M + K3 addi-

tions.

2.3. Stability

To guarantee the stability of the proposed algorithms, we need to set

δmin. Let us define the a posteriori estimation error as

ri = di − Uiwi, (16)

i.e., the error in estimating di by using the new weight estimate.

Since Uiwi will be a better estimate for di than Uiwi−1, the prop-

erty ‖ri‖2 ≤ ‖ei‖2 (with equality only when ei = 0) should be

satisfied. Assuming a scalar regularization parameter as (14c), it

holds that

ri =
�
I − µUiU

∗
i (UiU

∗
i + δ(i)I)−1�ei, (17)

and

‖ri‖2 = e∗
i A∗Aei ≤ e∗

i Iei = ‖ei‖2, (18)
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Table 1. Computational complexity of adaptive regularization ma-

trix

Algorithm multiplications additions

Proposed (12a) KM + K2 + 3K + 1 KM + K2 − K
Proposed (14a) KM + K2 + 2K + 2 KM + K2 − K

where we are defining

A �
�
I − µUiU

∗
i (UiU

∗
i + δ(i)I)−1� .

Therefore, ‖ri‖2 ≤ ‖ei‖2, if and only if the matrix (I − A∗A) is

positive-definite by (18). In addition, let UiU
∗
i = ViΛiV

∗
i denotes

the eigen-decomposition of the matrix UiU
∗
i , where Vi is unitary and

Λi = diag [λo(i), λ1(i), · · · , λK−1(i)] contains the corresponding

eigenvalues. Then

UiU
∗
i + δ(i)I = Vi(Λi + δ(i)I)V ∗

i , (19)

and

(UiU
∗
i + δ(i)I)−1 = Vi(Λi + δ(i)I)−1V ∗

i . (20)

Using the eigen-decomposition of UiU
∗
i and (20), the following holds:

A∗A = (I − µViΛ
′
iV

∗
i )∗(I − µViΛ

′
iV

∗
i )

= I − 2µViΛ
′
iV

∗
i + µ2ViΛ

′
i

2
V ∗

i , (21)

where Λ
′
i = Λi(Λi + δ(i)I)−1. So, it holds that

I − A∗A = µViΛ
′
i(2I − µΛ

′
i)V

∗
i . (22)

To satisfy (I − A∗A) is positive-definite, we find

2I − µΛ
′
i = 2I − µΛi(Λi + δ(i)I)−1

= 2I − µ diag

�
λo(i)

λo(i) + δ(i)
, · · · ,

λK−1(i)

λK−1(i) + δ(i)

�
> 0. (23)

Then, we get the lower bound of the regularization parameter for the

stability of the proposed algorithms as

δmin > λmax(i)
�µ

2
− 1

�
, (24)

where λmax(i) is a maximum value of λk(i) with 1 ≤ k ≤ K −
1. Also it is known that the convergence in the mean of R-APA is

guaranteed for any µ satisfying [2][3]

0 < µ < 2. (25)

3. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed algorithms by carry-

ing out computer simulations in a channel identification scenario.

The unknown channel H(z) has 16 taps and is randomly gener-

ated. The adaptive filter and the unknown channel are assumed

to have the same number of taps. A Gaussian distributed signal

is used for the input signal. The input signal is obtained by fil-

tering a white, zero-mean. Gaussian random sequence through a

first-order system G(z) = 1/(1 − 0.9z−1). The signal-to-noise ra-

tio (SNR) is calculated by SNR = 10 log10(E[y2(i)]/E[v2(i)]),
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Fig. 1. Performance of the proposed APAs in (12d) and (14c), and

conventional R-APA (K=8)
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Fig. 2. Performance of the proposed APAs in (12d) and (14c), and

conventional R-APA (K=4)

where y(i) = uiw
◦. The measurement noise v(i) is added to

y(i) such that SNR = 30dB. The mean square deviation (MSD),

E‖w◦ − wi‖2, is taken and averaged over 100 independent trials.

The initial value δj(0) is set to 0.001 and δmin is chosen to 0.0001

for all experiments. The step-size is always µ = 0.5.

In Fig. 1, we show the MSD curves for K = 8 and ρ = 1.0.

Dashed lines indicate the results of R-APA with fixed regularization

parameters where we choose δ = 0.001 and 30. As can be seen,

the proposed R-APA has the faster convergence and the lower mis-

adjustment error. In addition, the proposed R-APA with adaptive

non-identity regularization matrix has a improved performance than

with adaptive scalar regularization parameter as expected. In Fig. 2,

we choose K = 4 and ρ = 0.9. Fig. 3 shows the performance of the

proposed R-NLMS where ρ = 0.005. For the comparison purpose,

the GNGD [8] is presented using same ρ. A similar result of Fig. 1

is observed in Fig. 2 and Fig. 3.

Finally, Fig. 4 demonstrates the performance comparison of the
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Fig. 3. Performance comparison of the proposed NLMS in (15c),

GNGD [8], and conventional R-NLMS (K=1)
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Fig. 4. Performance comparison of the proposed APA in (12d)

(K=8), R-APA with delta-control [7] (K=8), and RLS

proposed R-APA, R-APA with the delta-control method [7], and the

RLS where K = 8. We choose the forgetting factor as λ = 0.98 and

0.99 for the RLS. In the figure, we know that the proposed R-APA

outperforms the delta-control method and is comparable to the RLS.

4. CONCLUSION

We have presented a family of novel R-APA with adaptive regu-

larization matrix. The matrix is more general and robust than the

conventional R-APA in that the matrix is non-identity and dynam-

ically updated. As a result, we highly improved the convergence

performance, which is even comparable to the RLS. Although here

we limited to diagonal regularization matrix, we may expect further

improvement by extending it to general square matrix. Also com-

putational reduction in adaptation of the regularization matrix is a

challenging subject.

Appendix
We start with

∂wi−1

∂δj(i − 1)
= µ

∂U∗
i−1(Ui−1U∗

i−1 + ∆i−1)−1ei−1

∂δj(i − 1)

= µU∗
i−1

∂(Ui−1U∗
i−1 + ∆i−1)−1

∂δj(i − 1)
ei−1. (26)

Let us define
Y � (Ui−1U∗

i−1 + ∆i−1).

From [9], we know that by differentiating Y Y −1 = I with respect to δj(i−
1)

∂Y

∂δj(i − 1)
Y −1 + Y

∂Y −1

∂δj(i − 1)
= 0. (27)

Then, we get

∂Y −1

∂δj(i − 1)
= −Y −1 ∂Y

∂δj(i − 1)
Y −1. (28)

Now we substitute Y = (Ui−1U∗
i−1 + ∆i−1) into (28), then

∂(Ui−1U∗
i−1 + ∆i−1)−1

∂δj(i − 1)

= −(Ui−1U∗
i−1 + ∆i−1)−1

∂(Ui−1U∗
i−1 + ∆i−1)

∂δj(i − 1)
·

·(Ui−1U∗
i−1 + ∆i−1)−1

= −(Ui−1U∗
i−1 + ∆i−1)−1 ∂∆i−1

∂δj(i − 1)
(Ui−1U∗

i−1 + ∆i−1)−1. (29)

Using (26) and (29), we obtain (8b).
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