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ABSTRACT

A variable regularized Affine Projection Algorithm (VR-APA) is in-
troduced, which does not require the classical step size. Its use is
supported from different points of view. First, it has the property of
being H∞ optimal, providing robust behavior against perturbations
and model uncertainties. Second, the time varying regularization
parameter is obtained by maximizing the speed of convergence of
the algorithm. At each time step, it needs knowledge of the power
of the estimation error vector, which can be estimated by averaging
observable quantities. Although we first derive it for a linear time
invariant (LTI) system, we show that the same expression holds if
we consider a time varying system following a first order Markov
model. Simulation results are presented to test the performance of
the proposed algorithm and to compare it with other schemes under
different situations.

1. INTRODUCTION

Adaptive filtering appear very frequently as a solution in engineering
problems [1]. Adaptive filtering schemes have not only the ability of
solving problems with less computational cost but can also deal with
time variations of the system (nonstationary environments).

In this work, we focus on the Affine Projection Algorithm (APA)
[2]. We propose an APA with a time varying regularization, which
is supported from different points of view. First, the regularization
parameter can control the changes along the direction of update with-
out an upper stability bound (for any positive value), so the classic
step size µ is no longer needed [3]. Second, we recently showed
in [3] that a regularized APA is H∞ optimal providing robust be-
havior against perturbations and model uncertainties. This approach
includes the traditional use of the explicit regularization to provide
numerical stability to those algorithms that have to deal with ill con-
ditioned matrix inversions. However, the regularization can also help
to reduce other instability sources, e.g. measurement noise.

In APA, some of the proposed methods for step-size control re-
quire extra processing for their implementation (like pre-whitening
or delay coefficients estimation) [4], while others have many param-
eters [5], which have not been linked to any expression that could
turn them into parameters of design (e.g., showing the steady state
estimation error as a function of these parameters). Although in
[3], we proposed an optimal choice for the regularization factor to
achieve maximum speed of convergence, it requires the knowledge
or computation of the system error power, E

[||w̃i||2
]
. To skip this

issue, we introduce here a variant that depends only on the power
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of the estimation error vector, i.e. E
[||ei||2

]
. We estimate it by

time averaging the observable quantity ||ei||2, allowing us to derive
a new Variable Regularized APA (VR-APA). The simple expression
derived here gives information about the relationship between the
regularization factor and the convergence behavior of the algorithm.
In addition, we prove that the same optimal regularization choice
holds if we consider a time varying system using a first order Markov
model.

In section 2 we introduce the APA recursion and propose to use a
variable regularized version of it. The optimal choice for the regular-
ization sequence is analyzed in section 3. Finally, simulation results
are presented in section 4. Boldface symbols are used for vectors (in
lower case letters) and matrices (in upper case letters).

2. THE APA FAMILY

Let wi =
(
w0

i , w1
i , . . . , wM−1

i

)T
be an unknown M × 1 linear

finite-impulse response system. The M × 1 input vector at time i,
xi = (xi, xi−1, . . . , xi−M+1)

H , passes through the system giving
an output yi = xH

i wi. This output is observed, but in this process it
usually appears a measurement noise, vi, which will be considered
as additive. Thus, each input xi gives an output di = xH

i wi + vi.
We want to find ŵi to estimate wi. This adaptive filter receives the
same input, leading to an output estimation error ei = di − xH

i ŵi.
When data blocks are used, we can define the M × K data ma-

trix Xi = [xi xi−1 · · · xi−K+1], the K × 1 desired vector di =

[di, di−1, · · · , di−K+1]
T , the K × 1 noise vector vi = [vi vi−1 · · ·

· · · vi−K+1]
T , the K × 1 estimation error vector ei = di−XH

i ŵi,
the system error vector w̃i = wi − ŵi and the a priori error vector
ea,i = XH

i w̃i.
The APA was first introduced in [2], and follows the recursion:

ŵi+1 = ŵi + µXi

(
XH

i Xi

)−1

ei (1)

where µ is a scalar known as step size, included to control the changes
along the selected direction. Moreover, setting K = 1 in (1), leads
to the popular NLMS algorithm.

The first motivation for using APA is to make an improvement
on the convergence speed with an acceptable increase in the compu-
tational cost. Sankaran and Beex have shown in [6] that 0 < µ < 1
and 1 < µ < 2 are both stable, but the first choice has less steady
state error with the same convergence speed. They also showed in
[7] that the tracking ability of APA is maximized when µ is close to
1. On the other hand, when highly colored input data are presented,
the matrix inversion in (1) becomes very difficult as its condition
number grows critically. Using this numerical stability argument, a
positive regularization term is usually added.
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These are some of the reasons why we propose to set µ = 1 and
use a time varying regularization parameter to control the changes
along the selected direction, so that the APA update becomes:

ŵi+1 = ŵi + Xi

(
βiIK + XH

i Xi

)−1

ei. (2)

This rule gives an “effective step size” in (0, 1) for any posi-
tive βi, so there is no upper bound that could make the algorithm
unstable. In the following, we define:

Si =
(
βiIK + XH

i Xi

)−1

. (3)

Despite the fact of assuming that the system is LTI in the next
section, we will consider the nonstationary environment when we
perform the optimization of the regularization parameter.

3. OPTIMAL REGULARIZATION CHOICE

As follows from the analysis performed in [3], any positive sequence
{βi} would guarantee the robust behavior of the APA. From the
many options that can be chosen, we will look for the one that max-
imize the speed of convergence. To do so, we choose for each i the
βi that minimizes E

[||w̃i+1||2
] − E

[||w̃i||2
]
. We assume that the

measurement noise is a zero mean white noise independent of the
input data. We also use the usual assumption [4][6][8][9] that ea,i

and vi are independent. As a consequence, the sequence βi is in-
dependent, i.e. independence between βi at different time steps. At
first, we assume a stationary environment and then analyze the non-
stationary one.
From the APA recursion (2):

E
[||w̃i+1||2

] − E
[||w̃i||2

]
= E

[
eH

i SiX
H
i XiSiei

]

− E
[
eH

a,iSiei

]
− E

[
eH

i Siea,i

]
. (4)

As ei = ea,i + vi, this leads to:

E
[||w̃i+1||2

] − E
[||w̃i||2

]
= E

[
eH

i SiX
H
i XiSiei

]

− 2E
[
eH

i Siei

]
+ 2E

[
vH

i Sivi

]
. (5)

Now, we perform a singular value decomposition (SVD) of the
input matrix, i.e. Xi = ViΣiU

H
i . By differentiating (5) partially

towards βi, its optimum value is the one that solve:

E
(
eH

i UiMiU
H
i ei

)
= E

(
vH

i UiOiU
H
i vi

)
(6)

where Mi and Oi are diagonal matrices:

(Mi)kk =
βi((

ρk
i

)2
+ βi

)3 (Oi)kk =
1((

ρk
i

)2
+ βi

)2

with
(
ρk

i

)2
and Ui ∈ C

K×K being the eigenvalues and eigenvector
matrix of XH

i Xi.
Suppose now that the system is nonstationary and its dynamic is

given by:
wi+1 = wi + ni (7)

where ni is a zero mean white noise vector independent of the sys-
tem. Following the same procedure as before, we can obtain (6) as in
the stationary case. This fact does not depend on the input statistics
nor on the system noise power.

3.1. Choice of βi under simplifying assumptions

Nevertheless we have just made the usual assumptions in APA anal-
ysis, solving (6) depends on the SVD of XH

i Xi. As we do not have
this information, we perform an heuristic approximation by replac-
ing for 1 ≤ k ≤ K: (

ρk
i

)2

≈ σ2
xM (8)

which is the average of the eigenvalues. Under this condition, the
matrices Mi and Oi can be expressed as a constant times the identity
matrix for each i. Hence, solving (6) leads to:

βi =
K σ2

v σ2
x M

E [||ei||2] − K σ2
v

. (9)

The denominator is large at the beginning of the adaptation,
leading to a small βi. As the error decreases, the denominator grows,
slowing the adaptation and allowing the APA to have a small misad-
justment. Intuitively, βi is also expected to be proportional to the
variables that appear on the numerator.

Despite the approximation (8) could seem inaccurate, we can
arrive to equation (9) with different assumptions. As E

[
XH

i Xi

]
=

M RK
x , where RK

x is the K − th order autocorrelation matrix of
the (stationary) input signal, if M is large and K << M (usual
condition in applications), then it is reasonable to assume:

XH
i Xi ≈ M RK

x . (10)

Thus, the eigenvalues and eigenvectors of RK
x are not stochastic

anymore. In general, RK
x will be required and the expression for βi

could be quite complicated. However, we can analyze two special
cases.

For white input (RK
x = σ2

x IK ), replacing (10) in (5) gives the
result:

E
[||w̃i+1||2

] − E
[||w̃i||2

]
=

2

Mσ2
x + βi

K σ2
v

− (Mσ2
x + 2 βi)

(Mσ2
x + βi)2

E
[||ei||2

]
. (11)

Minimizing this expression with respect to βi brings the optimal
regularization choice (9).

If the input is a highly correlated AR1 (first order autoregressive
process with pole close to 1), it can be proved that (9) is the solution
to the βi optimization [10].

Although the βi choice (9) was first derived heuristically, the two
extreme cases analyzed here encourage us to implement it. For these
reasons we propose a new Variable Regularized APA (VR-APA) by
using the update equation (2) with βi computed from (9). The quan-
tity E

[||ei||2
]

is estimated by time averaging ||ei||2.

4. SIMULATION RESULTS

For implementing the proposed algorithm, some issues should be
taken into account. The quantity E

[||ei||2
]

is estimated by averag-
ing ||ei||2 over a sliding window. This estimation could result in a
lower magnitude than Kσ2

v , specially when K > 1, which would
make βi < 0. When the denominator of (9) becomes negative, we
set βi = βMAX , which is the maximum value allowed for beta and
is defined by:

βMAX =
Mσ2

x

δ
(12)
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Fig. 1. Mismatch (in dB) for white input signal. M = 512, K = 1,
δ = 0.05, SNR = 30 dB.

where δ is a parameter of design that could be set for having a certain
level of steady state error (see [10] for details).

The system is taken from a measured impulse response, trun-
cated to M = 256 or M = 512. The adaptive filter length is set
equal to M in each case.

We use the mismatch, i.e. ‖w̃i‖2/‖wi‖2, as a measure of per-
formance. The plots are the result of ensemble averaging over 100
independent trials. A zero mean Gaussian white noise is added to
the system output, so that the signal to noise ratio is 30 dB, except
for the nonstationary environments where 60 dB is used. The output
variance is set to σ2

y = 0.1 and σ2
y = 1 respectively.

The performance of the proposed algorithm is compared with
other strategies. We simulate the standard APA with µ1 = 1 and
other with the µ2 that gives the same steady state mismatch as the
one of the VR-APA. In both cases, a fixed regularization factor is set
to β = 20 σ2

x. We also show the performance of the variable step
size APA (VSS-APA) introduced by Shin et al. [9]. Its update is
calculated as in (1), where:

µi = µmax
‖p̂i‖2

‖p̂i‖2 + C

p̂i = α p̂i−1 + (1 − α) Xi

(
XH

i Xi

)−1

ei

and C = σ2
vTr

{
E

[(
XH

i Xi

)−1
]}

. Although the authors proposed

that C could be approximated by K/SNR, we believe that a better
approximation is:

C ≈ K σ2
v

M σ2
x

. (13)

We set µmax = 1 and α = 0.99. One simulation uses C1 given
by (13) while another employs the C2 that gives the same steady
state mismatch as the one of the VR-APA.

Stationary systems

Fig. 1 shows the simulated results for white input excitation.
The proposed VR-APA outperforms the standard APA. With respect
to the VSS-APA, the authors in [9] claim that the performance is
not highly sensitive to the parameter C. Here, it can be seen that
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Fig. 2. Mismatch (in dB) for AR1(0.95). M = 512, K = 8, δ =
0.08, SNR = 30 dB.

even small changes lead to a 3.5 dB difference in the steady state
mismatch. Moreover, C2 could be bigger or smaller than C1 and it
can differ in more than one order of magnitude.

We also explore the performance for an AR1 input with pole in
0.95. In Fig. 2, C2 ≈ 150 C1 gives more than 16 dB improvement.
The VR-APA shows a good performance, with fast initial conver-
gence and low steady state.
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Fig. 3. Variation of βi across time for AR1(0.9). M = 256, K = 2,
δ = 0.08, SNR = 30 dB.

The evolution of βi across time is presented in Fig. 3 for an
AR1(0.9) with K = 2. Initially, it is small so fast convergence
is obtained. As the estimation of E

[||ei||2
]

becomes smaller, βi

increases until it reaches βMAX .
Although we have analyzed the cases of white and AR1 inputs

with long system responses, we also observed that the VR-APA out-
performs the other schemes even when these hypothesis are not sat-
isfied (not shown) [10].
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Nonstationary systems

First we test the recovery to a sudden change in the system. In
Fig. 4 we show the result of suddenly multiplying by -1 the system
response. The algorithm can learn the new system without loosing
performance with respect to the one with the initial system.

Now we study the performance under a first order Markov sys-
tem. To do so, we start with the parameters of the stationary systems
simulated in Fig. 4. Then, we generate a Gaussian white noise vec-
tor ni that is added to the system according to (7). Each component
of the noise vector has a power σ2

n.
The VR-APA can adapt well to this situation without increas-

ing so much βi, so that good tracking performance is accomplished.
Despite the fact that the VR-APA has the same performance as the
VSS-APA with C1 and the standard one with µ1 = 1, the proposed
algorithm have the same initial convergence speed and about 15 dB
improvement in steady state for the stationary case, as can be seen in
the first half of Fig. 4. The standard APA with small µ2 has a poor
performance as previously noted in [7].

5. CONCLUSIONS

In this work we proposed a modified update for the APA family,
which includes the explicit regularization factor. We performed an
analysis for optimizing βi to have maximum speed of convergence.
The general expression depends on the input statistics. Nevertheless,
we proved that the same expression holds for stationary and nonsta-
tionary (random walk) systems. A closed formula for βi was derived
and shows to be optimal for white and highly colored AR1 inputs.

The proposed VR-APA showed great performance under differ-
ent scenarios even when compared with standard and VSS APAs.
The variable regularization factor can control well the system up-
date and at the same time allow a robust performance against pertur-
bations (not only generated by numerical instabilities).
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