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ABSTRACT

The paper provides an analysis of transient and steady-state
behavior of a multichannel filtered-x set-membership affine
projection algorithm, suitable for multichannel active noise
control. The analysis relies on energy conservation arguments
and it does not apply the independence theory nor it imposes
any restriction to the signal distributions. The analysis re-
sults show that the filtered-x set-membership affine projection
algorithm can reduce the computational complexity without
trading residual mean-square-error and convergence speed.

1. INTRODUCTION

The choice of an adaptation algorithm for multichannel active
noise controllers is still a challenge for the DSP engineer. The
major concerns are the correlation between the outputs of the
different channels and the heavy computational needs caused
by the long impulse responses of the acoustic paths and by
the high number of reference microphones, actuators, and er-
ror microphones. As a matter of fact, the common multichan-
nel filtered-x LMS algorithm often shows very poor conver-
gence speed in the presence of strong correlation between the
error microphone signals. Better convergence behavior can
be obtained by using filtered-x affine projection (Fx-AP) al-
gorithms, but the computational needs may significantly in-
crease. Recently, filtered-x set-membership affine projection
(Fx-SM-AP) algorithms have been proposed in [1] in order
to attain the same improved convergence behavior of Fx-AP
algorithms but with reduced computational complexity. In-
deed, the set-membership (SM) criterion does not trade com-
putational complexity with convergence speed or with resid-
ual mean-square-error as with most adaptation algorithms.

Very few results can be found in the literature dealing with
the analysis of filtered-x, affine projection or set-membership
algorithms. The convergence analysis results for these algo-
rithms are often based on the independence theory (IT) and
they constrain the probability distribution of the input signal
to be Gaussian or spherically invariant [2]. The IT hypothe-
sis assumes statistical independence of time-lagged input data
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vectors. As it is too strong for filtered-x [3] and AP algo-
rithms [4], different approaches have been studied in the liter-
ature in order to overcome this assumption. In [3] an analysis
of the mean weight behavior of the filtered-x LMS algorithm
is presented based only on neglecting the correlation between
coefficient and signal vectors. Moreover, the analysis of [3]
does not impose any restriction on the signal distributions.
Another analysis approach that avoids IT is applied in [4] for
the mean-square performance analysis of AP algorithms. This
relies on energy conservation arguments and no restriction is
imposed on the signal distributions. In [5], we applied and
adapted the approach of [4] for analyzing the convergence
behavior of multichannel Fx-AP algorithms. In this paper we
extend the analysis approach of [5] and study the transient and
steady-state behavior of a Fx-SM-AP algorithm. The analy-
sis results confirm that the Fx-SM-AP algorithm can reduce
the computational complexity without trading residual mean-
square-error or convergence speed.

The paper is organized as follows. Section 2 reviews the
multichannel feedforward active noise controller structure and
introduces the Fx-SM-AP algorithm. Section 3 discusses the
asymptotic solution of the Fx-SM-AP algorithm and com-
pares it with that of Fx-AP algorithms and with the minimum-
mean-square solution of the ANC problem. Section 4 presents
an analysis of the transient and steady-state behavior of the
Fx-SM-AP algorithm. Section 5 provides some experimental
results. Conclusions follow in Section 6.
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Fig. 1. Delay-compensated filtered-x structure for active
noise control.
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Throughout this paper, small boldface letters are used to
denote vectors and bold capital letters are used to denote ma-
trices, e.g., x and X, all vectors are column vectors, the bold-
face symbol I indicates an identity matrix of appropriate di-
mensions, the symbol � denotes linear convolution,
diag{. . .} is a block-diagonal matrix of the entries, E[ · ] de-
notes mathematical expectation, ‖·‖Σ is the weighted Euclid-
ean norm, e.g., ‖w‖Σ = wT Σw with Σ a symmetric positive
definite matrix, sign(·) is the sign function, vec{·} indicates
the vector operator and vec−1{·} the inverse vector operator
that returns a square matrix from an input vector of appropri-
ate dimensions, ⊗ denotes the Kronecker product, Prob{A}
is the probability of the event A.

2. FILTERED-X SET-MEMBERSHIP AFFINE
PROJECTION ALGORITHM

Active noise controllers are based on the destructive interfer-
ence in given locations of the noise produced by some pri-
mary sources and the interfering signals generated by some
secondary sources. Fig. 1 shows the block diagram of a mul-
tichannel delay-compensated filtered-x active noise control
system. As usual, the primary and secondary paths, which
propagate the primary and secondary source signals, respec-
tively, are modelled with linear FIR filters. In order to com-
pensate for the propagation delay introduced by the secondary
paths, the outputs d(n) of the primary paths are estimated by
subtracting the outputs of the secondary path models from
the error sensors signals e(n). In this paper we assume per-
fect modelling of the secondary paths [we consider s̃k,j(z) =
sk,j(z) for any choice of j and k], but this limitation can be
easily removed by following the same methodology of [5].

For simplicity, we assume that any input i of the adaptive
controller is connected to any output j with an FIR filter. It
is worth noting that the theory we present in Sections 3 and 4
can be applied to any linear or nonlinear filter whose output
depends linearly on the filter coefficients [5].

The following notation is used throughout the paper:
I , J , and K are the number of primary source signals, sec-
ondary source signals, and error sensors, respectively,
L is the affine projection order,
sk,j(n) is the impulse response of the secondary path that
connects the jth secondary source to the kth error sensor,
wj,i(n) is the coefficient vector of the FIR filter that connects
the input i to the output j of the adaptive controller,
xi(n) is the i th primary source input signal vector,

x(n)=
[
xT

1 (n), . . . ,xT
I (n)

]T
,

wj(n)=
[
wT

j,1(n), . . . ,wT
j,I(n)]T ,

yj(n)=wT
j (n)x(n) is the jth secondary source signal,

dk(n) is the output of the kth primary path,
w(n)=

[
wT

1 (n), . . . ,wT
J (n)]T ,

M is the total number of coefficients of w(n),
uk(n)=

[
sk,1(n) � xT (n), . . . , sk,J (n) � xT (n)]T ,

dk(n)=
[
dk(n), . . . , dk(n − L + 1)

]T
,

d(n)=
[
dT

1 (n), . . . ,dT
K(n)

]T
,

Uk(n)=
[
uk(n), . . . ,uk(n − L + 1)

]
,

U(n)=
[
U1(n), . . . ,UK(n)

]
,

ek(n)=dk(n) + uT
k (n)w(n),

ek(n)=dk(n)+UT
k (n)w(n).

The SM approach specifies an upper bound γ on the mag-
nitude of the estimation errors ek(n). The bound γ is a design
parameter that quantifies the maximum level of residual noise
that can be accepted. The aim of the SM approach is to esti-
mate the set of coefficient vectors Θ, called the feasibility set,
given by (1),

Θ =
{
w ∈ R

M : |dk(n) + uT
k (n)w| < γ ∀ k, n

}
. (1)

For a properly chosen value of γ, the set Θ can comprise sev-
eral valid estimates of w. SM adaptive filters try to estimate
a solution belonging to the feasibility set Θ by projecting at
each time instant n the coefficient vector w(n) in the con-
straint set Hn given by (2),

Hn =
{
w ∈ R

M : |dk(n) + uT
k (n)w| < γ ∀ k

}
. (2)

The Fx-SM-AP algorithm considered in this paper is charac-
terized by the adaptation rule

w(n + 1) = w(n) − µ
K∑

k=1

Uk(n)
[
UT

k (n)Uk(n) + δI
]−1·

· sign[|ek(n)| − γ] + 1
2

· ek(n). (3)

By manipulating (3), the adaptation rule can also be written in
the compact form of (4), which will be used for the algorithm
analysis,

w(n + 1) = V(n)w(n) − v(n), (4)

with V(n)=I−µU(n)D(n)UT (n), v(n)=µU(n)D(n)d(n),
D(n)=diag

{[
UT

1 (n)U1(n)+δI
]−1

f1(n), . . .
. . .

[
UT

K(n)UK(n)+δI
]−1

fK(n)
}

and fk(n) =
[
sign(|ek(n)| − γ) + 1

]
/2.

3. ASYMPTOTIC SOLUTION

When the algorithm is convergent, the coefficient vector in (4)
will tend for n → +∞ to a unique asymptotic vector w∞,
provided that the following condition is met

Prob
{|dk(n) + uT

k (n)w∞| > γ} > 0. (5)

Since active noise controllers in most cases do not admit an
exact solution, for values of γ reasonably lower than the mean
absolute value of dk(n) the condition in (5) is always met. If
we take the expectation of (4) and consider the fixed-point of
this equation, it can be easily deduced that the Fx-SM-AP al-
gorithm, when converging, tends asymptotically to the fixed-
point of the following nonlinear equation

w∞=−E
[
U(n)D(n)UT (n)

]−1

E
[
U(n)D(n)d(n)

]
, (6)

where it should be noted that the matrix D(n) depends on
w∞ by means of fk(n) and ek(n). According to (6), the
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asymptotic solution w∞ is independent of the step-size µ. As
we already observed for Fx-AP algorithms [5], the asymptotic
solution differs from the minimum-mean-square solution of
the active noise control problem and it depends on the statis-
tical properties of the input signals. Moreover, the asymptotic
solution of the Fx-SM-AP algorithm also changes when vary-
ing the SM bound γ. Therefore, w∞ also differs from the as-
ymptotic solution of the Fx-AP algorithm given by (3) when
γ = 0. Nevertheless, for choices of γ reasonably lower than
the mean absolute value of dk(n), the experimental evidence
shows that w∞ remains close to the asymptotic solution of
the corresponding Fx-AP algorithm.

4. TRANSIENT AND STEADY-STATE ANALYSIS

The aim of the transient analysis is to study the time evolu-
tion of the expectation of the weighted Euclidean norm of the
coefficient vector E

[‖w(n)‖2
Σ

]
= w(n)T Σw(n) for some

choices of the symmetric positive definite matrix Σ.
By applying an approach similar to [5], the following re-

sult can be proven, which describes the transient behavior of
the Fx-SM-AP algorithm.

Theorem 1 Under the assumption that w(n) is uncorrelated
with V(n) and with qΣ(n) = VT (n)Σv(n), the transient
behavior of the Fx-SM-AP algorithms with updating rule given
by (3) is described by the state recursions

E [w(n + 1)] = E [V(n)] E [w(n)] − E [v(n)]

and W(n + 1) = Fn W(n) + Y(n),
where

Fn =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−p0 −p1 −p2 . . . −pM2−1

⎤
⎥⎥⎥⎥⎥⎦ ,

W(n) =

⎡
⎢⎢⎢⎢⎣

E[‖w(n)‖2
vec−1{σ}

E[‖w(n)‖2
vec−1{Fnσ}
...

E[‖w(n)‖2

vec−1{FM2−1
n σ}

⎤
⎥⎥⎥⎥⎦,

Y(n) =

⎡
⎢⎢⎢⎣

{
gT

n + 2E[wT (n)]Qn

}
σ{

gT
n + 2E[wT (n)]Qn

}
Fnσ

...{
gT

n + 2E[wT (n)]Qn

}
FM2−1

n σ

⎤
⎥⎥⎥⎦,

Fn = E
[
VT (n) ⊗ VT (n)

]
, Qn = E

[
vT (n) ⊗ VT (n)

]
,

gn =vec
{
E

[
v(n)vT (n)

]}
, σ =vec{Σ} and the pi are the

coefficients of the characteristic polynomial of Fn, i. e., p(x)=
xM2

+ pM2−1x
M2−1 +. . .+ p1x + p0 =det(xI − Fn).

Since the matrices V(n) and v(n) depend on w(n), the
matrices E [V(n)], E [v(n)], Fn, Qn, and gn are also func-
tion of E [w(n)] and of the state vector W(n). Therefore, the

transient behavior of the Fx-SM-AP algorithm is described by
the cascade of two nonlinear time invariant systems. A similar
characterization was already obtained in [6] for other adap-
tive algorithms with error nonlinearities. The stability and the
steady-state analysis can now be characterized by studying
the properties of the cascade of the nonlinear systems.

With the steady-state analysis, we are here interested in
evaluating the mean-square-error (MSE) in steady-state, which

is defined by MSE = lim
n→+∞E

[
K∑

k=1

e2
k(n)

]
. In the hypothe-

sis that w(n) is uncorrelated with
K∑

k=1

uk(n)uT
k (n) and

with
K∑

k=1

dk(n)uk(n), the MSE can be expressed as

MSE = Sd+2RT
udw∞+ lim

n→+∞E
[
wT (n)Ruuw(n)

]
, (7)

where Sd = E

[
K∑

k=1

d2
k(n)

]
, Ruu = E

[
K∑

k=1

uk(n)uT
k (n)

]

and Rud = E

[
K∑

k=1

uk(n)dk(n)

]
. The computation of (7) re-

quires the evaluation of lim
n→+∞E [‖w(n)‖Σ] , with Σ=Ruu.

This limit can be estimated with a methodology similar to [4]
and thus the following expression is obtained

MSE=Sd + 2RT
udw∞ +(

gT
∞ − 2wT

∞Q∞
)
(I − F∞)−1 vec{Ruu}, (8)

with F∞= lim
n→+∞Fn and similar definitions for Q∞ and g∞.

For small values of the step-size, the matrices F∞, Q∞, and
g∞ can be estimated from Fn, Qn, and gn, respectively, by
considering w(n) = w∞.

An expression similar to that of (8) can also be obtained
for the mean-square-deviation in steady-state [5].

5. EXPERIMENTAL RESULTS

In this section, we show some experimental results obtained
with a multichannel active noise control system with I = 1,
J =2, K =2. The impulse responses of the primary and sec-
ondary paths are respectively:
p11(n) = [0, 1.0,−0.3, 0.2], p21(n) = [0, 1.0,−0.2, 0.1],
s11(n) = [0, 1.0, 1.5,−1.0], s12(n) = [0, 1.0, 1.3,−1.0],
s21(n) = [0, 1.0, 1.3,−1.0], s22(n) = [0, 1.0, 1.2,−1.0].
The input signal is a zero-mean, unit-variance colored
Gaussian noise with E[x(n)x(n − m)] = 0.9|m| and a zero-
mean, white Gaussian noise is added to dk(n) to get a 30 dB
signal-to-noise ratio. Thus, the mean absolute values of d1(n)
and d2(n) are around 0.71. The controller is a two-channel
linear filter with memory length 4, i.e., with M =8.

The evaluation of the asymptotic solution w∞, i.e. the es-
timation of the fixed-point of (6), is performed with an it-
erative procedure. We first evaluate the asymptotic solution
for γ = 0, i. e., for fk(n) = 1, using (6). We then use this
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Fig. 2. Estimated values (–) and simulation values (- -) of (a)
steady-state MSE and (b) percent of adaptations versus γ for
AP orders L=1, 2, and 3.

value of w∞ for evaluating with better precision fk(n) and
the matrices on the right side of (6). We eventually improve
the estimation of w∞ by iterating its computation and that
of the matrices on the right side of (6). For values of γ rea-
sonably lower than the mean absolute value of dk(n), the it-
erative process converges in few steps. On the contrary, for
larger values of γ, failure of convergence is observed. In this
situation, other more effective procedures should be adopted
for estimating the fixed point of (6).

Once w∞ is determined, we can evaluate the MSE from
(8). Fig. 2-(a) diagrams the MSE of the Fx-SM-AP algo-
rithm, estimated with (8) or obtained from simulations, at dif-
ferent values of γ in the range [0.01, 0.16] and for the AP
order L = 1, 2, and 3 when the step-size µ = 0.125. Fig. 2-
(b) diagrams for the same values of γ the percent of times
when |ek(n)| > γ, i.e., the percent of adaptations performed
at steady-state by using the SM criterion estimated with w∞
or obtained from simulation. The missing points in the two
diagrams refer to situations where the iterative procedure was
unable to converge.

Fig. 3 diagrams the coefficients of w∞ for γ in the range
[0.01, 0.16], a step-size µ = 0.125, and an AP order L = 3.
For the same step-size and AP order, Fig. 4 plots the learning
curves of the residual error for γ=0.1, 0.4, and 0.16.

It is evident from Fig. 2, 3, and 4 that the reduction of the
computational complexity obtained by applying the SM cri-
terion affects only slightly the asymptotic solution, the MSE
and the convergence speed of the algorithm.
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6. CONCLUSIONS

In this paper we have provided an analysis of transient and
steady-state behavior of a multichannel Fx-SM-AP algorithm.
The analysis relies on energy conservation arguments and it
does not apply IT nor it imposes any restriction to the signal
distributions. The analysis results show that for an appropri-
ate range of γ the Fx-SM-AP algorithm reduces the computa-
tional complexity without trading residual mean-square-error
or convergence speed.
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