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ABSTRACT

In applications with highly correlated inputs or long length of
filter, adaptive filters suffer from slow convergence and large
steady-state error. Affine projection algorithms based on the
subband structure and step size controlling are good solutions
for these problems. In this paper, we propose a new subband
affine projection algorithm with variable step size. Experi-
mental results on highly correlated inputs produce faster con-
vergence, lower misadjustment error, and smaller complexity
than conventional methods based on the fullband structure.

1. INTRODUCTION

The LMS (Least Mean Square)-type algorithms are most pop-
ular and widely used because of its simplicity and robustness.
However, LMS adaptive filter suffers from slow convergence
when the input signal is highly correlated [1]. To overcome
this problem, the affine projection (AP) algorithm has been
proposed. The improved performance of the AP algorithm is
characterized by an updating-projection scheme of an adap-
tive filter on a P -dimensional data-related subspace [2]. By
increasing the projection order P of the AP algorithm, the
convergence rate accelerates. However, the increased projec-
tion order requires more computational complexity for updat-
ing the weights of the adaptive filter [3]. This complexity de-
pends on the matrix inversion, and the matrix size increases
with projection order of the AP adaptive filter. An alterna-
tive technique for improving the convergence rate of adap-
tive filter is subband adaptive filtering (SAF). In the SAF, the
convergence rate and steady-state error are improved by re-
ducing the dynamic spectral range of input signal. In [4],
Pradhan suggested an innovative subband structure using the
polyphase decomposition, noble identity, and maximal deci-
mation. It achieves more rapid convergence rate without the
aliasing problems and additional computations. The conver-
gence analysis of Pradhan’s subband structure [4] was per-
formed in frequency domain [5]. The analysis of [5] showed
that that Pradhan’s subband adaptive filter is always stable
and that its steady-state error is reduced. Recently, for fast
convergence and efficient implementation, there has been in-
creasing interest in combining advantages of the AP and SAF

[6][7]. In those algorithms, fast versions of the conventional
AP are used for reducing computational complexity, which
is due to the matrix inversion. These variants have used the
approximation schemes such as the iterative methods or the
sparse weight-updating. Owing to the approximations, how-
ever, the deterioration in convergence is unavoidable. In the
LMS-type algorithms and AP algorithm, the convergence rate
and steady-state error are governed by the step size µ. To find
the moderate trade-off between the fast convergence and low
steady-state error, the step size needs to be controlled. For
controlling of the step size in LMS-type algorithms, various
schemes based on scalar have been proposed [8][9]. Recently,
Shin [10] proposed a variable step size AP (VS-AP) with vec-
tor quantity. However, the maximum convergence rate of the
VS-AP is limited in that of the conventional AP.

In this paper, we suggest a new subband affine projection
(SAP) algorithm based on subband structure of [4], and de-
velop an appropriate variable step size technique for the pro-
posed SAP. In the proposed variable step size SAP (VS-SAP),
the convergence rate and the steady-state error performance
are improved by combining SAP with step size controlling.
Moreover, the complexity of VS-SAP is reduced by applying
the polyphase decomposition and noble identity to the max-
imally decimated adaptive filter. The convergence properties
and complexity of the VS-SAP are superior to those of full-
band VS-AP.

2. SUBBAND AFFINE PROJECTION ALGORITHM

Subband adaptive system identification model with the poly-
phase decomposition and noble identity is shown in Fig. 1
[4]. s∗ is an unknown system that we wish to estimate. xi(n)
and di(n) denote an input and a desired signal that partitioned
by the analysis filter hi. si(n) is Ns×1 vector as a polyphase
component of an adaptive filter, xij(n) is an input signal vec-
tor of si(n). It is well known that AP algorithm is the undeter-
mined optimization problem. Generally, Lagrangian theory
is used for solving this optimization problem with equality
constraints[1][11]. Based on the principle of minimum distur-
bance [1], we formulate the criterion for the M -subband AP
filters as one of optimization subject to multiple constraints,
as follows:

III  189142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



*s
0h

1−Mh

M

M

0h
M

M

)(0 ns

)(1 nM −s

+
−

+

)(nx

)(00 nx

)(1,0 nx M −

1+− Mz

)(0 ne

)(1 neM −

)(0 nd

)(1 ndM −

+

M )(1 ns
)(01 nx +

1−Mh
M

M

)(0 ns

)(1 nM −s

)(0,1 nxM −

)(1,1 nx MM −−

M )(1 ns
)(1,1 nxM − +

−

+

1−z

1+− Mz

1−z

)(0 ny

)(1 nyM −

)(0 nx

)(1 nxM −

Fig. 1. System identification model for the subband adaptive
filter for the M -subband case [4]

Minimize
M−1∑
i=0

f[ŝi(n)] =‖s0(n+1)− s0(n)‖2

+· · · + ‖sM−1(n +1) − sM−1(n)‖2

(1)

subject to the constraints

di(n)=
M−1∑
j=0

XT
ij(n)sj(n+1) for i = 0, 1, · · · ,M−1 (2)

where,

di(n) = [di(n) di(n − 1) . . . di(n − Ps + 1)]T , (3)

Xij(n) = [xij(n) xij(n − 1) · · · xij(n − Ps + 1)] , (4)

xij(n) = [xij(n) xij(n − 1) . . . xij(n − Ns + 1)]T . (5)

The parameter Ps is smaller than the dimension Ns of the
input data space or, equivalently, the polyphase decomposed
weight space in maximally decimated subband adaptive filter
structure. That is, Ns and Ps are the length of the adaptive
filter and the projection order in each subband, respectively.
Applying the method of Lagrange multipliers with multiple
constraints, we combine (1) and (2) to form the following cost
function for the AP algorithm in the M -subband structure of
Fig. 1 as

J(n)=

M−1∑
i=0

(
f [ŝi(n)]+[di(n)−

M−1∑
j=0

XT
ij(n)sj(n + 1)]T λi

)
(6)

where, λi is the Lagrange multiplier vector. In (6), the cost
function is quadratic, and also, it is convex since its Hassian
matix is positive definite [1][11]. Therefore, the proposed
cost function has a global minimum solution. Solving (6) for
λi that minimizes the quadratic cost function with respect to
si(n + 1), this solution is obtained as

[λT
0 · · · λT

M−1]
T= 2[AT (n)A(n)]−1[eT

0 (n) · · · eT
M−1(n)]T

(7)

A(n) =⎡
⎢⎢⎢⎣

X00(n) X10(n) . . . X(M−1)0(n)
X01(n) X11(n) . . . X(M−1)1(n)

...
...

. . .
...

X0(M−1)(n) X1(M−1)(n) . . . X(M−1)(M−1)(n)

⎤
⎥⎥⎥⎦ (8)

ei(n)=di(n)−
M−1∑
j=0

XT
ij(n)sj(n+1) (9)

A(n) is MNs × MPs matrix. Let Φ(n) be AT (n)A(n). It
can be represented as

Φ(n) =

⎡
⎢⎣

G0(n) C(n)
. . .

CT (n) G(M−1)(n)

⎤
⎥⎦ (10)

In (10), Φ(n) is MPs×MPs matrix, and the elements of off-
diagonal component C(n) consist of sample cross-correla-
tions between the signals for the ith and jth subband (i �= j),
whereas, the elements of diagonal component Gi(n) consist
of sample auto-correlations. Assuming that the input signal
is wide-sense stationary and ergodic, the cross-correlation at
zero lag, γx00x10+x01x11(k, l), can be expressed as

γx00x10+x01x11(0) =
[
xT

00(k)x10(k) + xT
01(k)x11(k)

]
/Ns.
(11)

For analytical simplicity, we further assume that the input
signal is white giving us a flat spectrum. From these as-
sumptions, E{xT

00x00 + xT
01x01} = σ2

x0
(σ2

x0
is the vari-

ance of subband signal, hT
0 x) and E{xT

00x10 +xT
01x11} = 0.

For colored inputs, E{xT
00x10 + xT

01x11} �= 0. However, if
the frequency responses of the analysis filters do not overlap
significantly, it is always true that E{xT

00x10 + xT
01x11} �

E{xT
00x00 + xT

01x01}. That is, the elements of off-diagonal
component C(n) are remarkably small compared with the el-
ements of diagonal component Gi(n). Therefore, we can
consider C(n) ≈ 0. From (10), we can easily get Φ−1(n)
following as

Φ−1(n) =

⎡
⎢⎢⎢⎢⎣

G−1
0 (n) 0 . . . 0

0 G−1
1 (n)

...
...

. . . 0
0 . . . 0 G−1

(M−1)(n)

⎤
⎥⎥⎥⎥⎦ (12)

With the above approximations, the recursive relation for up-
dating the coefficients of the subband adaptive filters can be
obtained as

S(n + 1) = S(n) + µA(n)Φ−1(n)E(n), (13)

S(n) =
[
sT
0 (n) sT

1 (n) · · · sT
M−1(n)

]T
,

E(n) =
[
eT
0 (n) eT

1 (n) · · · eT
M−1(n)

]T
,
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where µ is step size. The proposed SAP shown in (13) has
smaller complexity than that of the fullband AP. In (4), the
size of matrix depends on a spectral magnitude range of input
signal and it can be decreased by the reduced bandwidth in
each subband. When the size of the data matrix in the fullband
is N × P , in the subband, it becomes Ns × Ps = (N/M) ×
(P/M). Therefore, the computational complexity for weight-
updating is reduced in the proposed SAP.

3. VARIABLE STEP SIZE TECHNIQUE FOR SAP

To control step size in the SAP, we have modified the results
in [10]. We examine the mean square deviation (MSD) with
an weight error vector that defined as S̃(n) = S∗ − S(n).
From the update recursion (13), the MSD satisfies

E{‖S̃(n +1)‖2} − E{‖S̃(n)‖2}
= µ2E{ET (n)Φ−1(n)E(n)}
− 2µE{ET (n)Φ−1(n)AT (n)S̃(n)}
≡ −�(µ) (14)

�(µ) = −µ2E{ET (n)Φ−1(n)E(n)}
+ 2µE{ET (n)Φ−1(n)AT (n)S̃(n)} (15)

Since (15) is a quadratic concave function, the MSD can be
minimized by the maximum value of µ. From this result, the
optimum step size at iteration n is given by

µ∗ =
E{ET (n)Φ−1(n)AT (n)S̃(n)}

E{ET (n)Φ−1(n)E(n)} . (16)

The error vector in (13) that includes measurement noise can
be rewritten as

E(n) = AT (n)S∗ − AT (n)S(n) + z(n)
= AT (n)S̃(n) + z(n) (17)

where z(n) is white Gaussian measurement noise with a vari-
ance σ2

z . Assuming the input data matrix A(n) is statisti-
cally independent upon z(n) and neglecting the dependency
of S̃(n) on past noise, E{ET (n)Φ−1(n)E(n)} is rewritten
by using the result of [10]

E{ET (n)Φ−1(n)E(n)}
= E{[S̃T (n)A(n) + zT (n)]Φ−1(n)[AT (n)S̃(n) + z(n)]}
= E{S̃T(n)A(n)Φ−1(n)AT(n)S̃T(n) + zT (n)Φ−1(n)z(n)}
= E{S̃T(n)A(n)Φ−1(n)AT(n)S̃T(n)}

+ E{zT(n)Φ−1(n)z(n)}
= E{‖S̃T (n)‖2

Σ} + σ2
zTr[E{Φ−1(n)}]

(18)

where E{‖S̃(n)‖2
Σ}=E{S̃T(n)A(n)Φ−1(n)AT (n)S̃T(n)}.

From (18), the optimum step size is approximated as [10]

µ∗(n) =
E{‖S̃(n)‖2

Σ}
E{‖S̃(n)‖2

Σ} + σ2
zTr[E{Φ−1(n)}] , (19)

Let p(n) ≡ A(n)Φ−1(n)AT (n)S̃T (n).

‖p(n)‖2=ST (n)A(n)Φ−1(n)AT (n)A(n)Φ−1(n)AT (n)̃S(n)
(20)

From (10),

E{‖p(n)‖2} ≈ E{ST (n)A(n)Φ−1(n)AT (n)S̃(n)} (21)

Instead of expectation, using ‖p̂(n)‖2 estimated with the time
averaging, (19) is represented by

µ∗(n) =
‖p̂(n)‖2

‖p̂(n)‖2 + σ2
zTr[E{Φ−1(n)}] (22)

where p̂(n) = αp̂(n− 1) + (1− α)A(n)Φ−1(n)E(n) [10].
Combining (13) with (22), we obtain the variable step size
subband affine projection (VS-SAP) algorithm as

S(n + 1) = S(n) + µ(n)A(n)Φ−1(n)E(n) (23)

µ(n) = µmax
‖p̂(n)‖2

‖p̂(n)‖2 + C
(24)

where µmax is set to the value that provides fastest conver-
gence speed for the initial convergence stage. C is a positive
constant related to σ2

zTr[E{Φ−1(n)}] and it can be approxi-
mated as (MPs)/SNR [10]. For the stability of VS-SAP,

0 < µ(n) ≤ µmax < 2 (25)

In (22)–(24), the computational complexity for finding the
optimum step size of VS-SAP is reduced by applying the
polyphase decomposition and noble identity to adaptive fil-
ter. And also, the complexity for its weight-updating is re-
duced. Therefore, total complexity of the proposed method is
considerably smaller than that of the conventional method.

4. SIMULATIONS

In order to evaluate the convergence rate and steady-state er-
ror performance of the VS-SAP, we perform computer simu-
lations in system identification scenario. The lengths of anal-
ysis filters are increased with M so that the ratio of the tran-
sition band to the passband is maintained nearly the same for
all values of M . In particular, we use the cosine modulated
filter banks [12] for analysis and synthesis filters. The proto-
type filters’ lengths are 32 and 64 for M = 2 and 4, respec-
tively. The input signals are obtained by filtering a zero-mean
white Gaussian random sequence through the IIR (infinite im-
pulse response) filter, HIIR = 1/(1+0.999z−1 +0.99z−2 +
0.995z−3 + 0.99z−4). Fig. 2 shows the misalignment curves
of the fullband AP [2], variable step size AP(VS-AP) [10],
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Fig. 2. Misalignment of the estimated system

and the proposed M = 2 VS-SAP. The unknown system to
be identified is length N = 32 FIR (finite impulse response)
filter with coefficients chosen randomly. The maximum step
size is set to 1 (µmax = 1) for VS-AP and VS-SAP. And the
fixed step size for the conventional AP is µ = 0.1. The pro-
jection order in each algorithm is P = Ps = 4. We choose
α=0.99, C =1.0 × 10−4, and α=0.99, C =1.0 × 10−2 for
VS-AP and VS-SAP respectively. In Fig. 2, the performances
of the VS-SAP are superior to those of other algorithms in
convergence rate and misalignment. The misalignment curves
obtained by using the reduced projection order Ps = P/M
are shown in Fig. 3. The projection orders of VS-AP and the
fullband AP are all P = 4, whereas the proposed VS-SAP
uses the reduced projection order, Ps = P/M . In Fig. 3, the
convergence property of the proposed VS-SAP is similar to
that of VS-AP. However, we can expect that the complexity
of the VS-SAP is gradually reduced by increasing M .

5. CONCLUSIONS

We proposed the subband affine projection algorithm with
variable step size. The proposed VS-SAP produces better
performance when compared to conventional methods. More-
over, the proposed SAP can be simplified by partitioning into
the same number of subbands as the projection order. These
results lead us to the conclusion that the proposed VS-SAP
is one of the best solutions in the adaptive signal processing
application with highly correlated input signal. Several sim-
ulation results were included to verify the theoretical results
and to show the improved performance of the proposed meth-
ods.
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