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ABSTRACT

This paper addresses the problem of target detection in the

presence of Doppler spread clutter which is neither

stationary during a coherent integration time (CIT) interval

nor across different range bins. This phenomenology

occurs, for example, in over-the-horizon skywave HF radar

where propagation through moving ionospheric

inhomogeneities spreads the surface clutter and the clutter 

statistics can change quite abruptly during a CIT and across 

range bins. In these cases, the performance of conventional

adaptive techniques suffers from a lack of adequate training 

data. The method proposed here breaks the full CIT into

smaller sub-CIT's which are then extrapolated using low 

order AR models. The Doppler spread clutter is thus

effectively modeled as an abruptly time varying 

autoregressive (ATVAR) process. Subsequent Doppler

processing and coherent combining of the extrapolated sub-

CIT's is then performed with improved signal-to-clutter gain

since only a small proportion of the sub-CIT's are corrupted

by abrupt non-stationary behavior. Moreover, nearly full

coherent signal gain against noise is maintained. Initial

processing on experimental radar clutter data with injection

of a simulated target illustrates that this approach can

provide an SCNR improvement of more than 5 dB

compared to conventional Doppler processing.

1. INTRODUCTION 

This paper addresses the problem of detecting targets in the

presence of non-stationary Doppler spread clutter. This is a

commonly encountered problem in radar and sonar.

Conventional target detection depends on Doppler

discrimination of moving targets from surface backscatter. 

However, in radar applications, radio wave propagation

through highly time-varying channels can cause the surface 

clutter returns to spread significantly in Doppler space, 

thereby obscuring target signatures.  Several approaches 

have been proposed to mitigate Doppler spread clutter [1, 

2]. One approach has been to estimate the time-varying

modulation imposed by the channel and then to demodulate

the radar return so as to de-spread the clutter [1, 2]. 

Unfortunately, however, estimates of the temporal

modulation are often contaminated by the target, which

leads to signal cancellation during the demodulation

process. Alternatively, adaptive Doppler filtering methods

[2] that use adjacent ranges or azimuths to compute the

clutter covariance matrix are prone to failure because of the 

statistical inhomogeneity of the propagation environment

across different ranges and azimuths. More recently, a

method which models the clutter as a slowly time-varying

AR process has been proposed [4]. Although similar in

concept to our approach, the method proposed in [4] has not

shown promise with real data. We hypothesize that this is

because it is sensitive to rapid transitions in the modulation

statistics, which appear to occur frequently in practice.

The approach proposed here is designed to exploit the

short-time stationarity of temporal modulation imposed on 

the surface backscatter, with accommodation for a few rapid

transitions. Time-varying autoregressive modeling of clutter

return with abrupt transitions is used to design the adaptive

Doppler processor in Sections 2 and 3. Receiver operating

characteristics (ROC) presented in Section 4 using a target

injected into real radar clutter data suggests that the

proposed method provides a significant improvement in

detection performance versus conventional methods.

2. TIME VARYING CLUTTER MODEL 

Doppler spectrum of surface backscatter from ocean 

nominally consists of two or more sharp Bragg lines at

predicable frequencies.  However, the Doppler spread of 

these lines indicates that the clutter return is, in fact, 

stationary only for a fraction of the coherent integration

time (CIT) of the radar. Thus consider modeling the

temporal clutter return at the receiver beamformer output as 

sum of modulated complex sinusoids. The temporal

modulation sequence is assumed to be a non-stationary

process with abrupt transitions in the modulation statistics.

After beamforming, the clutter time series at the 

hypothesized range and azimuth cell is thus modeled as 
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modulating the k  Bragg line. To model non-stationary

behavior, we assume that the modulation statistics change

abruptly at certain time instants say [ ,  where 

is the number of transitions. Furthermore, the modulation

sequence  within each segment

th
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etc. is modeled as a band-limited stationary

random process. Let  denote the lengths of the

segments of the modulation sequence. The temporal

sequence modulating the entire CIT can be written as: 
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where  is a stationary process that exists only for a

short segment and . Here, we have 

assumed that the temporal sequences modulating different

Bragg lines have identical non-stationary behavior although

the individual sequences may be different. Furthermore, the

modulation segments h  are assumed to be uncorrelated

with each other. Even though the sub-CIT sequences are

band-limited, the overall modulation sequence  is not

band-limited due to the presence of abrupt transition

between the segments.

The radar return at the receiver contains strong non-

stationary clutter, accompanied by a weak target return and 

background noise. The target return is assumed to be 

stationary across the full CIT. This is not unreasonable since

a relatively unperturbed raypath is required to even detect

high-speed aircraft targets from the background noise

(which is usually lower than the clutter level). In vector

notation, the N x 1 beamformed time series snapshot, , for 

the range and azimuth under test can be expressed as 

(3)

where is the complex exponential of the target return

with Doppler shift  and  is the unknown target

amplitude. The vector c represents the temporally

modulated clutter described in equation (1). The receiver 

noise component is modeled as a zero-mean complex

Gaussian vector with covariance .   The objective here 

is to detect the presence of the target signal (i.e. ) in 

the presence of clutter and noise.

3. ATVAR PROCESSING 

In this section, we first derive an expression for the Doppler

spread clutter resulting from the model in equation (2) and

then proceed to describe our clutter mitigation algorithm. In 

order to simplify the expression for the Doppler spread 

clutter, we make two assumptions, which have no impact on

the performance of our algorithm. First, we assume that the

sea clutter return consists of a single Bragg line with

Doppler frequency . We also assume that the modulation

sequence has only a single transition at some

unknown location . As the modulation sequence remains

stationary in between the transitions, the modulation

segments  can be expressed as sum of uncorrelated

complex exponentials during this short period. If the full-

CIT clutter  is partitioned into two segments
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for  and . Amplitudes of the

modulated clutter frequencies  are uncorrelated

within the segment as well as from one segment to another.

Frequency resolution of the modulated clutter components

is inversely proportional to the segment length . Full-

CIT Doppler processed clutter return at the receiver output

is given by
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where, is the Fourier transform of the conventional

Doppler processing window  and is the product of 

clutter amplitude and the phase factors resulting from

Fourier transforming operation. Doppler spread caused by

non-stationary modulation of the clutter return affects the

detection performance of the conventional processor in two

ways. The wider sinc functions have broad temporal

mainlobes
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) , which can suppress weak targets

that are close to the Bragg lines. Higher sidelobes caused by

abrupt transitions lead to an increase in the overall sidelobe

level thus masking weak targets that are even far away from

the Bragg lines. To derive an expression for the sidelobe

level, let us consider a Doppler frequency away from the

clutter Bragg lines such that it is in the sidelobe of the sinc

function. If the transition point is close to the middle of the

CIT, the tapering window has negligible effect in combating

the high sidelobes. In this case, the clutter sidelobe level is

given by,
1
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This equation also shows that the sidelobe levels increase

with the number of transitions.
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Our approach to clutter mitigation consists of designing

an adaptive Doppler processor that suppresses the Doppler

spread clutter while preserving the Doppler output of weak 

stationary targets. In this method, the full-CIT data is

divided into shorter segments of length  called ‘sub-

CITs’ and the clutter return in each sub-CIT is modeled as

an autoregressive process of relatively low order. Moreover,

the number of sub-CIT's is assumed to be large compared to

the number of abrupt transitions in the clutter data.  Thus 

the AR model fails only for a relatively small number sub-

CITs that encompass an abrupt transition. The full CIT 

clutter return c n  can be represented as a time-varying

autoregressive (TVAR) process with abrupt change in the

AR parameters from one sub-CIT to the next.

0
N

( )

( ) ( ) ( )
ei ei

X f X f W f     (10) 

Here, is the Fourier transform of the tapering

window. Target returns in the sub-CIT data are not

extrapolated by DATEX, as they are usually very weak 

compared to the clutter. The final step is to design a set of 

complex weights for combining the DATEX outputs of all

sub-CITs coherently, so that the output SNR of a stationary

target is maximized. For a hypothesized target Doppler

frequency , output SNR is maximized if the weights are 

chosen to be conjugate of starting phase of the target

exponential  in each sub-CIT. Coherently stitched

ATVAR Doppler output can be expressed as:
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Here, M is the order of the TVAR process and ( )n  is the

non-stationary white noise process driving the TVAR all-

pole filter. The time-varying AR parameters remain constant

during the sub-CIT.
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X f is compared to a preset threshold to 

detect the presence of targets. Successful ATVAR clutter 

mitigation requires that the number of bad sub-CIT’s, which

are corrupted due to their inclusion of abrupt transitions, be

much smaller compared to the total number of sub-CITs.

The TVAR parameters in each sub-CIT are estimated using

Burg AR algorithm by minimizing the sum of forward and 

backward prediction errors. The pole frequencies of the

TVAR parameters represent the time-varying frequencies of

the temporally modulated clutter given by equation (4). The

TVAR parameters are used to extrapolate the sub-CIT data

and compensate the Doppler resolution loss resulting from

shorter correlation lengths  of the modulation function.

The sub-CIT extrapolation is done using a data

extrapolation method (DATEX) proposed by Swingler and 

Walker [3] in 1989. In this method, autoregressive linear

prediction is used to extrapolate the data equally in both

forward and backward directions. The full CIT data

mN

( )x n is

divided into sub-CIT segments ( )
i

x n  corresponding to

[1, 2, ..., ]
s

i N  and DATEX extrapolation is performed

independently in each sub-CIT. Extrapolation of the ith sub-

CIT data is performed by IIR filtering the M endpoint data

with the estimated AR parameters.

4. RESULTS 

Abruptly time-varying autoregressive (ATVAR) processing

is applied to real over-the-horizon (OTH) radar data into

which a stationary simulated target is injected. The radar

uses a waveform with 5.2 Hz pulse repetition frequency and

25.4 seconds observation time (CIT). Detection

performance of ATVAR method is analyzed by injecting a 

stationary target at 20 different range bins and 20 different

Doppler bins in the sub-clutter region (-0.3 Hz to 0.3 Hz

and 0.8 Hz to 1.2 Hz). TVAR model of order 6 and sub-CIT

length 6.3 seconds (32 pulses) is used to detect the targets.

Figure 1 is a conventional range-Doppler map computed

with non adaptive –96 dB sidelobe Taylor window. The 

injected target at range bin 36 is hardly seen due to strong

Doppler spread clutter in between the Bragg lines. Figure 2

shows the range-Doppler map computed using ATVAR

processing. Strong target peak can be clearly seen in the

plot. Furthermore, Bragg lines are sharper and the sub-

clutter visibility is significantly improved. The target-to-

clutter gain achieved by ATVAR processing can be 

observed more precisely in the Doppler cuts shown in

Figure 3. ATVAR provides more than 5 dB gain in target

signal to clutter plus noise ratio (SCNR) while the

conventional Doppler spectrum overshadows the target with

Doppler spread clutter. The last plot, figure 4, shows the

detection probability of the two methods as a function of 

injected target SNR for a fixed false alarm probability of

0.1. A constant false alarm rate (CFAR) detector is
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implemented by normalizing the target power with respect

to the background clutter level.

5. CONCLUSIONS

A partially adaptive Doppler processing technique aimed at

mitigating non-stationary clutter for improved target

detection has been proposed. This method models the clutter

return using an abruptly time-varying AR model to exploit

the non-stationarity. ATVAR processing improves the target

detection by mitigating the effects of abrupt changes in the

temporal modulation function while preserving the target

gain against white noise.
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     Figure 1:  Range-Doppler Plot with Conventional Processing 
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     Figure 2:  Range-Doppler Plot with ATVAR Processing 

0 2 4 6 8 10 12 14 16 18 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR in dB

P
d

Detection probability as a function of SNR for PF=0.1

Conv

ATVAR

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-50

-40

-30

-20

-10

0

10

20

30

Doppler frequency [Hz]

Radar Doppler spectrum

Conv

ATVAR

Figure 3: Comparison of Conventional and ATVAR spectrum.      Figure 4: Detection Performance as a function of SNR 
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