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ABSTRACT

By exploiting the relative motion between the target and the
radar, high-resolution images of moving targets can be pro-
duced using inverse synthetic aperture radar (ISAR). Recent
studies have shown that accurate ISAR images can be ob-
tained using the non-parametric high-resolution Capon and
APES spectral estimators. In this paper, we propose a com-
putationally efficient time-updating of the two-dimensional
(2-D) Capon and APES spectral estimators using their in-
herent time-varying displacement structures. Numerical sim-
ulations indicate that the proposed implementation offers a
significant reduction in computational complexity as com-
pared to other recent implementations.

1. INTRODUCTION

Inverse synthetic aperture radar (ISAR) imaging offers the
possibility to form high-resolution images of moving tar-
gets, and is an important technique to improve automatic
target recognition performance. In conventional SAR, the
imaged target is assumed stationary while the radar is mov-
ing. In ISAR, the radar is stationary (or moving) while
the imaged target is moving in a noncooperative way, mak-
ing ISAR imaging more difficult than SAR imaging [1].
Conventionally, ISAR images are formed using the Fourier
transform, yielding estimates suffering from poor resolu-
tion and high sidelobes. More recent spectral estimation
techniques have also been applied to SAR/ISAR imaging,
with complex ISAR imaging recently attracting significant
attention [2–6]. As shown in [7], maneuvering targets with
nonuniform rotational motion will yield blurred images as
a result of the time-varying Doppler-shifts corresponding to
the cross-range of each scatterer. To mitigate this effect,
computationally efficient time-varying implementations of
the forward-only (F-O) Capon and APES spectral estima-
tors were proposed in [5,6]. In [8], we proposed a 1-D time-
updating of the block-based implementation of the forward-
backward (FB) averaged Capon and APES algorithms pro-
posed in [9]. Herein, we extend on this work, proposing a
sliding-window time-updating of the 2-D Capon and APES
spectral estimators as a way of forming time-varying ISAR

imaging. The implementation is based on the estimators’ in-
herent time-variant displacement structure, which allows for
the time-updating of the inverse Cholesky factors of the (FB
averaged) covariance matrix estimate using the numerically
robust time-variant generalized Schur algorithm presented
in [10]. The resulting time-updated spectral estimates of-
fers a significant computational gain as compared with pre-
viously proposed approaches. Furthermore, via simulations,
we found the suggested updating to be numerically superior,
yielding a lower error propagation, as compared to a time-
updated spectral estimate formed from the more direct (but
computationally costlier) recursive updating of the sample
covariance matrix proposed in [5, 6].

2. DATA MODEL

Following the notation in [3,6], let N denote the number of
range samples and N̄ the sliding window length along the
cross-range dimension. Let {zn,t−n̄, n = 0, . . . , N−1, n̄ =
0, . . . , N̄−1} denote the phase history of a target of interest
within the sliding window ending at index t in a cross-range.
For a generic frequency pair (ω, ω̄),

zn,t−n̄ = αt(ω, ω̄)eiωn+iω̄(N̄−1−n̄) + vn,t−n̄(ω, ω̄), (1)

where αt(ω, ω̄) and vn,t−n̄(ω, ω̄) denote the time-varying
complex amplitude of a 2-D cisoid, and an additive (col-
ored) noise and interference term, respectively. We note that
αt(ω, ω̄) is assumed to be so slowly varying that it can be
well modeled as being approximately stationary within the
sliding window. Let the (M × M̄)-tap matrices Ht(ω, ω̄)
and Zl,t−l̄ denote a 2-D finite impulse response (FIR) filter
and the (l, l̄)th forward data (so-called “snapshot”) matrix
constructed from zn,t−n̄, respectively, and define (see [3, 6]
for a more detailed description of the structure of Ht(ω, ω̄)
and Zl,t−l̄)

ht(ω, ω̄) = vec {Ht(ω, ω̄)} (2)

zl,t−l̄ = vec
{
Zl,t−l̄

}
(3)

for l = 0, . . . , L−1, l̄ = 0, . . . , L̄−1, where vec(·) denotes
the operation consisting of stacking the columns of a matrix
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on top of each other, L = N −M +1 and L̄ = N̄ −M̄ +1.
Let

Rt =
L−1∑
l=0

L̄−1∑
l̄=0

zl,t−l̄z
∗
l,t−l̄ (4)

denote the (forward) covariance matrix estimate, where (·)∗
denotes the conjugate transpose. Furthermore, introduce

aM,M̄ (ω, ω̄) = aM (ω) ⊗ aM̄ (ω̄), (5)

with ⊗ denoting the Kronecker product,

aM (ω) =
[

1 eiω . . . eiω(M−1)
]T

, (6)

and aM̄ (ω̄) formed similar to aM (ω). The resulting (forward-
only) Capon and APES estimates are formed as [3]

α̂t(ω, ω̄) =
a∗

M,M̄
(ω, ω̄)Q−1

t Zt(ω, ω̄)

LL̄a∗
M,M̄

(ω, ω̄)Q−1
t aM,M̄ (ω, ω̄)

, (7)

where QC
t = Rt and QA

t = Rt−Zt(ω, ω̄)Z∗
t (ω, ω̄)/(LL̄),

for the respective estimators, with

Zt(ω, ω̄) =
L−1∑
l=0

L̄−1∑
l̄=0

zl,t−l̄e
−ilω−iω̄(L̄−1−l̄). (8)

The FB averaged estimators, which often yield preferable
performance, can be formed similarly [3]. In this paper, we
propose a computationally efficient sliding window time up-
date of the FB averaged estimates as an additional (column)
vector in the cross-range direction becomes available.

3. PROPOSED RECURSIVE TIME-UPDATING

Using the matrix inversion lemma, one may evaluate the
estimates in (7), and similarly their FB versions, using a
number of matrix-vector multiplications and Fourier trans-
forms of the inverse Cholesky factor of Rt [11]. This fact
is exploited in the implementation presented in [9], which
also uses the inherent displacement structure of Rt to ef-
ficiently evaluate the inverse Cholesky factors of Rt us-
ing the generalized Schur algorithm. In [8], we extended
the 1-D version of this implementation by allowing for a
time-updating using the time-variant generalized Schur al-
gorithm [10]. Herein, we further extend on this work by
allowing for the time-updating of 2-D data sets.

The time-variant FB covariance MM̄ × MM̄ matrix
Rt is said to have a time-variant displacement structure if
the matrix difference ∇Rt, defined by [10, 12]

∇Rt = Rt − FtRt−∆F∗
t , (9)

has low rank, say r, where Lr � LL̄, for some lower tri-
angular matrix Ft. The time-variant displacement rank, r,

provides a measure of the degree of structure present, with
lower rank indicating stronger structure.

We note that a sliding window time-updating of the FB-
version of Rt can be expressed as

Rt = Rt−1 + GtJtG∗
t , (10)

where Gt and Jt are given below, allowing for a time-variant
displacement structure with ∆ = 1 and Ft = I. Thus,
∇Rt = GtJtG∗

t , where Gt is a MM̄ × Lr generator ma-
trix and Jt is a Lr × Lr signature matrix with either ±IL,
where IL denotes an L×L identity matrix, along its diago-
nal. Here,

Jt =

⎡
⎢⎢⎣

IL 0 0 0
0 IL 0 0
0 0 − IL 0
0 0 0 − IL

⎤
⎥⎥⎦ (11)

and

Gt =
[

Xl,t−l̄ JeX∗
l,t−l̄

Yl,t−l̄ JeY∗
l,t−l̄

]

where Je denotes the exchange matrix, and with Xl,t−l̄ and
Yl,t−l̄ given by (12) and (13), found at the top of next page.
From (11), we note that r = 4, typically1 making Lr sig-
nificantly less than LL̄. We note that the positive-definite
nature of Rt guarantees the existence of a unique (lower
triangular) Cholesky factor, Lt, such that

Rt
�
= LtL∗

t =
[

Lt−1 Gt

] [
In 0
0 Jt

] [
L∗

t−1

G∗
t

]

The above relation can be extended to allow for the direct
evaluation of the time-updated inverse Cholesky factors Ut,
where R−1

t = UtU∗
t , i.e.,

[
Rt I
I R−1

t

]
=

[
Lt−1 Gt

Ut−1 0

]

×
[

In 0
0 Jt

] [
L∗

t−1 U∗
t−1

G∗
t 0

]
(14)

Hence, it follows that there exists an [In ⊕ Jt]-unitary rota-
tion matrix2, Γt, such that[

Lt 0
Ut H∗

t

]
=

[
Lt−1 Gt

Ut−1 0

]
Γt (15)

Note that Γt has the effect of rotating the generator matrix
onto the expression Lt−1 and Ut−1 to produce the updated
Cholesky factor Lt and inverse Cholesky factor Ut, respec-
tively. We note that a block zero entry in the left-hand side

1Depending on the application, LL̄ is usually very large.
2Here, a J-unitary matrix Θ is defined as any matrix Θ such that

ΘJΘ∗ = J. Further, a ⊕ b denotes a matrix with the sub-matrices
a {n × n} and b {m × m} concatenated to produce a matrix of size
{(m + n) × (m + n)}.
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Xl,t−l̄ =
[

zl,t+(l−1)l̄−l+1 zl,t+(l−1)l̄−l+2 · · · zl,t+(l−1)l̄

]
(12)

Yl,t−l̄ =
[

zl,t−l̄+1 zl,t−l̄+2 · · · zl,t−l̄+l

]
(13)

of (15) and the inverse generator matrix H∗
t are also pro-

duced as a result. The rotational transform Γt is typically
implemented as a sequence of elementary transforms, such
that Γt = Γ1

tΓ
2
t · · ·ΓL

t , where Γk
t annihilates the kth row

of the generator matrix (and simultaneously generates the
kth row of the inverse generator matrix). The rotation ma-
trices Γt can be formed in numerous different ways. They
are, however, typically formed from a combination of the
Householder and Givens rotations. Both of these transforms
have the general form

[
a b

]
Θ =

[
α 0

]
, (16)

where αH =
√|a|2 − |b|2 for a Householder and αG =√|a|2 + |b|2 for a Givens rotation. The corresponding ro-

tation matrices are given as

ΘH =
1√|a|2 − |b|2

[
a −b

−b∗ a

]
(17)

and

ΘG =
1√|a|2 + |b|2

[
a b
b∗ −a

]
(18)

The Givens rotation is used for “updating” the factor with
new samples and the Householder rotation has the effect of
“downdating” the factor by removing those samples which
are no longer present in the time-updated sample frame. In
this way, an appropriate combination of rotations can be de-
termined to correctly time-update each Cholesky factor col-
umn vector in turn. One should note that in practice each
column of the Cholesky factor (and inverse) is concatenated
with the generator matrix to make an {MM̄ +1}×{Lr+1}
matrix, as illustrated in (19), and as each vector is updated,
this process is repeated whilst each row of the generator ma-
trix is annihilated until all the column vectors of the new
Cholesky (and inverse) factors are produced.

⎡
⎢⎢⎣

l g g
l g g
l g g
u 0 0

⎤
⎥⎥⎦Γ1

t−→

⎡
⎢⎢⎣

l′ 0 0
l′ g′ g′

l′ g′ g′

u′ h h

⎤
⎥⎥⎦ followed by

⎡
⎢⎢⎣

l g′ g′

l g′ g′

u h′ h′

u 0 0

⎤
⎥⎥⎦Γ2

t−→

⎡
⎢⎢⎣

l′ 0 0
l′ g′′ g′′

u′ h′′ h′′

u′ h′ h′

⎤
⎥⎥⎦ etc. (19)
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Fig. 1. Computational gain of evaluating the amplitude
spectrum Capon estimate using the proposed method as
compared with the method in [6].

4. NUMERICAL EXAMPLES

To the best of our knowledge, the currently most efficient
way to evaluate the 2-D Capon and APES spectral estimates
is the method introduced in [6]. There, it was found that
the complexity of evaluating the amplitude spectrum Capon
estimate is O(4M2L3 + 10M4L + 5LK2log2K) opera-
tions per iteration. The herein proposed method requires
O(2N2log2N

2+M2(4L+12M2log2M
2+2N2log2N

2)+
4M2log2M

2 + N2log2N
2 + 2K2log2K

2) operations per
iteration. For simplicity, we here assume that N = N̄ ,
M = M̄ = N/2, and K = K̄ = 2N , where K de-
notes the number of grid points to be evaluated in the image.
Figure 1 illustrates the computational gain of evaluating the
amplitude spectrum Capon using the proposed algorithm as
compared to the method presented in [6]. As seen from the
figure, the presented method offers a significant computa-
tional gain3 even for modest data sizes such as N > 32.
Furthermore, we have noted that the proposed method of-
fers a significant improvement in error propagation as com-
pared to the method in [6]. The latter requires two matrix in-
versions per iteration, whereas the formed relies on Givens
and Householder rotations to form the updating. In our

3Similar complexity gain is achieved for the APES spectral estimate.
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Fig. 2. An example of an ISAR image of a simulated mov-
ing MIG-25 airplane obtained using the windowed FFT.

experience, these rotations are numerically robust, yield-
ing a preferable error propagation [8]. Finally, Figures 2
and 3 illustrate the quality improvement in the ISAR im-
age offered by the Capon approach as compared to a tra-
ditional Fourier-based technique. The images are formed
from N = N̄ = 32 signal phase history data of a simulated
fast rotating MIG-25 airplane, evaluated on K = K̄ = 2N
grid points. Figure 2 shows the ISAR image obtained by
applying the windowed 2-D fast Fourier transform (FFT)
method, whereas Figure 3 shows the corresponding power
spectral Capon image. As can be seen in the figures, the
Capon estimate offers a significantly clearer image of the
airplane as compared to the FFT-based image (see also [5,6]
for further examples of achieved quality improvements us-
ing the different estimators). In conclusion, we note that
further complexity reductions are expected by also allowing
for recursive updating of the filter polynomials, and we are
currently extending the presented work in this direction.
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